REF ID:A62839

INTRODUCTION TO CRYPTOLOGY VI

-Confidential

Declassified and approved for release by NSA on 12-18-2013 pursuant to E.O. 13528

[Great attacked 4 pages of by purities matter hing]

INTRODUCTION TO CRYPTOLOGY - VI WILLIAM F. FRIEDMAN

This lecture, the sixth and last in this series, deals with cryptology in the period from the end of World War I to the end of World War II (Unclassified material only). The emphasis in this lecture is upon communications security (COMSEC) not only because in the five preceding lectures the emphasis was placed very largely upon communications intelligence (COMINT) but also because although not as spectacular as COMINT, COMSEC in the final analysis, is really more vital to National Security than COMINT.

Kou will portegal recold that the very first lecture in this ceries reconstructed by the to the role that COMINT (or "Magic") played not only in the events preceding the Japanese shall stack on Pearl Sarbor but also in the military, naval and all operations which followed that sitack. This is not the place nor is there what the bank and attempts to acceptain the name time to go into the temple problem involved to an attempts to acceptain the name of the persons all to standard in the blank for being caught by surprise. Millions of words have been published on this subject and I do not propose to add to biological patronal of the persons all territors whatever thoughts I may have these and I do not propose to add to that voldinous literature whatever thoughts I may have these of information in the blank of the propose to the propose to add to have there is one while but externely significant place of information in the blank of the propose to the propose to add to have there is one while but externely significant place of information in the blank of the propose to the place of the propose to the prop

polyon in the Surveying at the bound of home referred You will recall that in

the first lecture I called to your attention an article which appeared and which was

based upon a letter, the late General George C. Marshall, then Chief of Staff of the

Army, wrote to Governor Thomas E. Dewey, Republican candidate for President in the Here is a picture showing how the two principals looked at that is 1944 election campaign. In that letter, which was written on 27 Sept. 1944, General

Marshall practically begged Governor Dewey to say nothing during the campaign about a certain piece of very vital information which General Marshall had reason to believe

REF ID:A62839

This, the sixth and final lecture in this series on the history of the cryptology, will be devoted to a presentation of events and developments of significance or importance in that history from the end of World War I to the end of World War II.

vithin a lecture of only 50 minutes all that should or could be told in that
segment of our history of oxyptology. In a mutahell, however, it can be said that the
most significant and important events and developments during that quarter of
a century were directly concerned or connected with the advances made in the
production of more complex mechanical, electrical, and electronic cryptographic

we trian to increase or to facilitate quarter cryptographic apparatus, and with the concomitant advances in the production of more
sophisticated mechanical, electrical, and electronic apparatus for the production of more
sophisticated mechanical, electrical, and electronic apparatus for the production of more
sophisticated mechanical, electrical, and electronic apparatus for the production of more
sophisticated mechanical, electrical, and electronic apparatus for the production.

Solution of the production of more
sophisticated mechanical, electrical, and electronic apparatus for the production.

Solution of the production of more
sophisticated mechanical, electrical, and electronic apparatus for the production of more
sophisticated mechanical, electrical, and electronic apparatus for the production of more
sophisticated mechanical, electrical, and electronic apparatus for the production of more
sophisticated mechanical, electrical, and electronic apparatus for the production of more
sophisticated mechanical, electrical, and electronic apparatus for the production of more
sophisticated mechanical, electrical, and electronic apparatus for the production of more
sophisticated mechanical, electrical, and electronic apparatus for the production of more
continued to the production of more complex mechanics.

The section of the production of more continued to the production of more complex mechanics.

increasingly complex matters but security considerations prevent my doing so

because the classification of these lectures, viz, CRFIDERTIAL, is the lowest

one now possible. As to the advances in the development and use of more complete apparatus I will only note at this point a comment
which General Char Bradley makes in his quiet but very intersting book entitled

A Soldier's Story:

W New York: Henry Holt and Co., 1951, page 474.

REF ID: A62839

Signal Corps officers like to remind us that "although Congress can make a general, it takes communications to make him a commander."

It is immedest for me to try to smend General Bradley's remark but this is how I wish he had worded it:

Signal Corps officers like to remind us that "although Congress can make a general, it takes rapid and secure communications to make him a good commander."

This will in fact be the keynote of this lecture. In other words, communications security, or COMSEC, will be its main theme and the one I wish to emphasize.

But before coming to that part of our history perhaps a bit more attention must be devoted to events and developments of cryptanalytic significance or importance during the period 1918 to 1946. By far the most spectacular and interesting of these are the one which were so fully and disastrously disclosed by the various investigations conducted by the Army and Navy very secretly while World Wer II was still in progress, and both secretly and openly after the close of hostilities. The investigations were intended to ascertain why our Army and Navy forces in Hawaii were caught by surprise by the sneak attack on rear! Harbor by the Japanese on the morning of 7 December 1914 They were also intended to ascertain and pin the blame on whoever was responsible for the debacle. I don't think I should even attempt to give you my personal opinion on these complex questions, which were studied by seven different boards within the Services and finally by the Joint Congressional Committee on the Investigation of the Pearl Herbor Attack. I mentioned the latter investigation in my first lecture and now I wast add to what I then said. The ecceptites published its carly Tintings, conclusions and recommendations in 1946. It began its work in September 1945 with secret hearings, but on 70 days subsequent to 15 November 1945 up to and including 31 May 1945 open hearings were conducted, in the course of which some

15,000 pages of testimony were taken and a total of 183 exhibits received In July 1946 the Committee sent to incident to an examination of 43 witnesses. The Countities put out a final. the Government Printing Office its Report of 580 processesting forth its funding Conclusion, and reconstructions 37 volumes of testinony and exhibits. was readly not a single report: The Report there was one by the Majority (signed by six Democratic and two Republican members), and one by the Minority (signed by two Republican members). The Minority Report was not nearly as long as that of the Majority but it brought into focus certain troublesome points which still form the subject of acrimonious discussions and writings who believe the attack was "engineered" by President Boosevelt, and that contain outhorities in Washington were as culpable

For this bistery an interesting fact is that both the Majority and Minority Reports contain glowing tributes to the role played by COMINI before and during (NSA Technical Journal, Vol. IV, No. 4, Oct 1959, p.5) our participation in World War II. In my first lecture, I presented a brief

as were certain commandors in the Army and in the Navy in Howaii.

extract in this regard taken from the Majority Report? but here is what the

Minority Report says on the subject%

6. Through the Army and Navy intelligence services extensive information was secured respecting Japanese war plans and design, by intercepted and decoded Japanese secret messages, which indicated the growing danger of war and increasingly after November 26 the imminence of a Japanese attack.

With extraordinary skill, zeal, and watchfulness the intelligence services of the Army Signal Corps and Navy Office of Naval Communications broke Japanese codes and intercepted messages between the Japanese Government and its spies and agents and embassadors in all parts of the world and supplied the high authorities in Washington reliable secret information respecting Japanese designs, decisions, and operations at home, in the United States, and in other countries. Although there were delays in the translations of many intercepts, the intelligence services had furnished to those high authorities a large number of Japanese messages which clearly indicated the growing resolve of the Japanese Government on war before December 7, 1941.

2 Page 5 of NSA Technical Journal (Vol. & date); quoting from page 230 of the Report of the Majorition Sanata Document No. 244, 79th Congress, 2d Sassain (Groverment Prentice) Office, Washington, 1946), p. 232. 9 Bid, p. 514.

REF ID: A62839

The Majority Report made five main recommendations, of which the second is of special interest:

That there be a complete integration of Army and Navy intelligence agencies in order to avoid the pitfalls of divided responsibility which experience has made so abundantly apparent; that upon effecting a unified intelligence, officers be selected for intelligence work who possess the background, penchant, and capacity for such work for an extended period of time in order that they may become steeped in the ramifications and refinements of their field aniemploy this reservoir of knowledge in evaluating material received. The assignment of an officer having an aptitude for such work should not impede his progress nor affect his promotions. Efficient intelligence services are just as essential in time of peace as in war, and this branch of our armed services must always be accorded the important role which it deserves.

I assume that due note of this recommendation has been by the services but how far it has been possible and practicable to insure that the recommendations has been carried out or will be I do not know. In this commention I think it may be of interest to cite what the distinguished commander whom I have already mentioned, General Omer Bradley, has to say on this point:

In their intelligence activities at Allied Forces Headquarters, the British easily outstripped their American colleagues. The tedious years of prewar studies the British had devoted to areas throughout the world gave them a vast advantage which we never overcame. The American Army's long neglect of intelligence training was soon reflected by the ineptness of our initial undertakings. Far too many years in the preparation of officers for command assignments, we had overlooked the need for specialization in such activities as intelligence. It is unrealistic to assume that every officer has the capacity and the inclination for field command. Many are uniquely qualified for staff intelligence duties and indeed would prefer to denote their careers to those tasks. Yet instead of grooming qualified officers for intelligence assignments, we rotated them through conventional duty tours, making correspondingly little use of their special talents. Misfits frequently found themselves assigned to intelligence duties. And in some stations G-2 became a dumping ground for officers ill suited to line command. recall how serupulously I avoided the branking that came with an intelligence assignment in my own career. Had it not been for the uniquely qualified reservists who so capably filled so many of our intelligence jobs throughout the war, the army would have found itself badly pressed for competent intelligence personnel.

Have some of you pondered over the reason why an officer who reaches the highest level of command in an army, ours as well as inforeign armies, is called a "general officer" or General ? It is because he is supposed to have

Switt, 5,253.

Sport of the Majority.

5/ Op. Cit., page 33.

by diligent study and fitte handler persone) [competent spice alists to a solist learned/something about everything connected with military operationsall the operations under this operate and responsibility. As a field commander the generalist could wonder this operate in cognizance and responsibility. As not a specialist cryptology, in COMINT and COMSEC for military, wavel is in the alists can be of utmost ascitance to who generalists That is ishere you come into the preture can be bears without first-hand experience in That is where you comeinto the picture - as their responsible and qualified my-military investigence operations, let alone the much Apecialists in the quite complex operations more complicated business of cryptology as applied in modern will there persitors? as to the possible applications of eruptology in the futures, But let us leave these speculations, interesting as they may be, and of such applications in the past. continue with our history. Let us first dispose of certain comments in the CONTINT area of that history, and specifically to the role that COMINT (or "Magie") played, not only in the events preseding the attack on Paose However but also in the military, navel, and air operations which enough , not only in the Parific but also in Europe Theater.

REF ID: A62839

had become known to Governor Devey, it having been "leaked" to him by persons not authorized to disclose it. The information dealt with the fact that the U.S. had certain Snigh-level
been reading, Japanese codes and cipherseven before the attack on Pearl Harbor. The vital point which General Marshall wanted to convey to Governor Dewey was that not only was the information which had surreptitously been given to Governor Dewey true the following via, but more important were the facts, that (1) the war was still in progress; (2) the Japanese were still using certain of the pre-Pearl Harbor cryptosystems; and (3) the U. S. was still reading the secret communications in these systems as well as certain other enemy communications. Therefore, it was vital that Governor Devey not use the information which had come into his possession as to our reading Jap-and that he not use as political assumption, the that the attack should not have caught us by surface anese secret communications prior to the attack on Pearl Harbor. I said in that first lecture that I might later give further extracts from TIME's account and, to

continues the extracts printed on pages 3, 4, and 9 of the first lective, here they are:

> General Marshall had a long series of bad moments after U. S. flyers, showing a suspicious amount of foresight, shot down Admiral Yamaoto's plane at Bougainville in 1943. Gossip rustled through the Pacific and into Washington cocktail parties; General Marshall got to the point of asking the FBI to find an officer Two could be made an example of The FBI, fearful of looking like a Gestapo, refused).

Once a decoder was caught in Boston trying to sell the secret. Once, well-meaning agents of the Office of Strategic Services ransacked the Japanese Embassy in Lisbon, whereupon the Japs adopted a new code for military attaches. This code remained unbroken more than a year later. The worst scare of all came during the 1944 presidential campaign, when George Marshall heard that Thomas E. Dewey knew the secret and might refer to it in speechest

Yet for all these fears, the Japs never discovered that the U.S. was decoding their messages. Even after the surrender, the Army still used Magic as a guide to occupation moves; though it had once been planed to send a whole army into Korea, Magic showed that a single regiment would be enough.

SECRET KEPT

The letter, on stationery of the Chief of Staff's Office, bore a bold heading: TOP SECRET, FOR MR. DEWEY'S EYES ONLY. Candidate Thomas E. Dewey, his curiosity piqued, read rapidly through the first two paragraphs: If I over barned about the incident, I have forgotten all about it. But I shall never forgot about the Sister spisode. W.F.F. Alexander (

I am writing you without the knowledge of any other person except Admiral King (who concurs) because we are approaching a grave dilemma in the political reactions of Congress regarding Pearl Harbor.

What I have to tell you below is of such a highly secret nature that I feel compelled to ask you either to accept it on the basis of your not communicating its contents to any other person and returning this letter or not reading any further and returning the letter to the bearer.

Tom Dewey looked up from the typewritten page. As he did the word cryptograph, a few paragraphs below, flashed into his vision like a red traffic light. He made his decision quickly, folded the letter, handed it back. Colonel Carter W. Clarke (in mufti), who had flown from Washington to Tulsa to catch up with Tom Dewey's campaign, went back, his mission uncompleted. Here's a partial of Colonel Clarks of Lands of the page of the colonel Clarks of Lands of the page of the colonel Clarks of Lands of the page of the colonel Clarks of Lands of the page of the colonel Clarks of the colonel clarks of the page of the colonel clarks of the colonel clark

"YOU HAVE MY WORD." It was September 1944. The campaign train rolled up through the Midwest, returned to Albany. A few days later Tom Dewey received another visit from Colonel Clarke.

The Colonel, again in civilian clothes handed over another letter from General Marshall. The General had changed his mind somewhat:

all taline

I am quite willing to have you read what comes hereafter with the understanding that you are bound not to communicate to any other person any portions on which you do
not now have or later receive factual knowledge from some
other source than myself . . . You have my word that neither
the Secretary of War nor the President has any intimation
whatsoever that such a letter has been addressed to you.

THE LOCKED FILE. This time Tom Dawey read on. As he turned the pages, he became the first man outside the high command to know the full story of "Magic" and what it was accomplishing in the War against the Japs. (**Japane**) The letter closed with a plea:

I am presenting this matter to you, for your secret information, in the hope that you will see your way clear to avoid the tragic results with which we are now threatened in the present political campaign.

Tom Dewey locked the letter in his files, went back to his electioneering. Though he had known before that the U.S. had cracked the Jap code, had suspected that this information cast grave doubts on Franklin Roosevelt's role before Pearl Harbor, he held his tongue. The War Department's most valuable secret was kept out of the campaign.

MEETING AT A FUNERAL. Recounting this story at the Pearl Harbor hearing last week, General Marshall recalled that he and Tom Devey never discussed the matter in person until they met at Franklin Roosevelt's funeral last April; "I asked Mr. Devey to come with me to the War Department and I showed him current Magic showing Japanese movements. His attitude was friendly and gracious."

Had Marshall ever told Franklin Roosevelt of the letters to Devey? Said Marshall: "The President died without knowledge of it."

SECRET LOST

The Pearl Harbor Committee blithely tossed away one still-secret U. S. Government weapon. George Marshall's letters to Governor Dewey Ages Therefore mentioned that the U. S., with the help of the British, had decoded German as well as Japanese messages, George Marshall begged the Committee to cut out these references. The Committee refused.

Publication of the letters thus gave the Germans their first knowledge that their code had been broken. It was also a breach of diplomatic confidence with the British, who had let the U.S. in on the secret on the understanding that it would be kept.

John John

- 3

The Marshall-Devey correspondence is so important in cryptologic history that

I feel that the whole of it should be included even in this brief history. When

the letter was written it was, of course, TOP SECRET, and it was only under great

from

pressure by certain members of the Joint Congressional Committee on the Envestigation of the Marshall revealed the contents of the Letter on Feel Marshall revealed the contents of the Letter caused a great sensation in the newspapers - but also when the 40 volumes of the Hearings of that

Committee were published to another of the Committee and put on sale by the Superintendent of Documents of the Government Printing Office. The disclosure of the

contents of the Marshall-Devey correspondence was indeed such a sensation that

LIFE magazine printed the whole of it in its issue of 17 December, 1945, with the

following introduction:

MARSHALL-DEWEY LEFTERS

GENERAL TOLD CANDIDATE WE HAD BROKEN JAP CODE

During the 1944 election campaign General George C. Marshall wrote two letters to Republican Candidate Thomas E. Dawey, telling him that Army cryptographers had broken the Japanese "ultra" code. This fact was first revealed in a story by LIFE Editor, John Chamber-lain, which appeared in LIFE, Sept. 24. Marshall's purpose, Chamber-lain wrote, was to foretall Dewey's revelation of that fact in a possible attack on the Robsevelt administration's Japanese policy before Pearl Harbor. The actual text of the letters remained secret until last week, when General Marshall appeared before the Congressional Committee investigating Pearl Harbor and made the letters public. They appear below.

When he had finished reading the first two paragraphs of the first letter, Governor Dewey stopped because, as the Chamberlain article reported, "the letter might possibly contain material which had already come from other sources, and that anyway, a candidate for President was in no position to make blind promises." General Marshall sent the letter back again with an introduction which relatived the governor of binding conditions. This time Dewey read the letter and after much thought and discussion decided not to make use during the campaign of any information he previously had.

So far as I am aware it has neither been ascertained nor disclosed, if known, who gave Governor Dewey the information. But it is a fact that as a patriotic citizen, he acceded to General Marshall's request - he made no use whatever of the vital secret information during the campaign or after it. TIME's account specifically states that Dewey "held his tongue. The War Department's most valuable secret was kept out of the campaign." I know that the two. — W.F.E.

i

REF ID:A62839

FIRST LETTER

— TOP SECRET (FOR MR. DEWEY'S EYES ONLY)

25 September 1944

My Dear Governor:

I am writing you without the knowledge of any other person except Admiral King (who concurs) because we are approaching a grave dilemma in the political reactions of Congress regarding Pearl Harbor.

What I have to tell you below is of such a highly secret nature that I feel compelled to ask you either to accept it on the basis of your not communicating its contents to any other person and returning the letter or not reading any further and returning the letter to the bearer.

I should have preferred to talk to you in person but I could not devise a method that would not be subject to press and radio reactions as to why the Chief of Staff of the Army would be seeking an interview with you at this particular moment. Therefore, I have turned to the method of this letter, to be delivered by hand to you by Colonel Carter Clarke who has charge of the most secret documents of the War and Navy Departments.

In brief, the military dilemma resulting from Congressional political battles of the political campaign is this:

The most vital evidence in the Pearl Harbor matter consists of our intercepts of the Japanese diplomatic communications. Over a period of years our cryptograph people analyzed the character of the machine the Japanese are using for encoding their diplomatic messages. Based on this, a corresponding machine was built by us which deciphers their messages.

Therefore, we possessed a wealth of information regarding their moves in the Pacific which in turn was furnished the State Department-rather than, as is popularly supposed, the State Department providing us with information - but which unfortunately made no reference whatever to intentions toward Hawaii until the last message before Dec. 7, which did not reach our hands until the following day, Dec. 8.

Now the point to the present dilemma is that we have gone ahead with this business of deciphering their codes until we possess other codes, German as well as Japanese, but our main basis of information regarding Hitler's intentions in Europe is obtained from Baron Oshima's messages from Berlin reporting his interviews with Hitler and other officials to the Japanese Government. These are still in the codes involved in the Pearl Harbor events.

To explain further the critical nature of this set-up which would be wiped out almost in an instant if the least suspicion were aroused regarding it, the Battle of the Coral Sea was based on deciphered messages and therefore our few ships were in the right place at the right time. Further, we were able to concentrate on our limited forces to meet their advances on Midway when otherwise we almost certainly would have been some 3,000 miles out of place.

We had full information of the strength of their forces in that advance and also of the smaller force directed against the Aleutians which finally landed troops on Attu and Kiska.

Operations in the Pacific are largely guided by the information we obtain of Japanese deployments. We know their strength in various garrisons, the rations and other stores continuing available to them and what is of vast importance, we check their fleet movements and the movements of their convoys.

The heavy losses reported from time to time which they sustain by reason of our submarine action largely results from the fact that

In regard to this and the successful form paragraphs;

The my comment below (p. 00). W.F. F.

REF ID: A62839

we know the sailing dates and the routes of their convoys and can notify our submarines to lie in wait at the proper point.

The current raids by Admiral Halsey's carrier forces on Japanese shipping in Manila Bay and elsewhere were largely based in timing on the known movements of Japanese convoys, two of which were caught, as anticipated, in his destructive attacks.

You will understand from the foregoing the utter tragic consequences if the present political debates regarding Pearl Harbor disclose to the enemy, German of Jap, any suspicion of the vital sources of information we now possess.

The Roberts' report on Pearl Harbor had to have withdrawn from it all reference to this highly secret matter, therefore in portions it necessarily appeared incomplete. The same reason which dictated that course is even more important today because our sources have been greatly elaborated.

As a further example of the delicacy of the situation, some of Donovan's people (the OSS), without telling us, instituted a secret search of the Japanese Embassy offices in Portugal. As a result the entire military attache Japanese code all over the world was changed, and though this occurred over a year ago, we have not yet been able to break the new code and have thus lost this invaluable information source, particularly regarding the European situation.

A recent speech in Congress by Representative Harness would clearly suggest to the Japanese that we have been reading their codes, though Mr. Harness and the American public would probably not draw any such conclusion.

The conduct of General Eisenhover's campaign and of all operations in the Pacific are closely related in conception and timing to the information we secretly obtain through these intercepted codes. They contribute greatly to the victory and tremendously to the savings of American lives, both in the conduct of current operations and in looking toward the early termination of the war.

I am presenting this matter to you, for your secret information, in the hope that you will see your way clear to avoid the tragic results with which we are now threatened in the present political campaign. I might add that the recent action of Congress in requiring Army and Navy investigations for action before certain dates has compelled me to bring back the corps commander, General Gerow, whose troops are fighting at Trier, to testify here while the Germans are counterattacking his forces there. This, however, is a very minor matter compared to the loss of our code information.

Please return this letter by bearer, I will hold it in my secret file subject to your reference should you so desire.

Faithfully yours, G. C. Marshall

SECOND LETTER

TOP SECRET

(FOR MR. DEWEY'S EYES ONLY)

27 September, 1944

Mr Dear Governor:

Colonel Clark, my messenger to you of yesterday, Sept. 26, has reported the result of his delivery of my letter dated Sept. 25. As I understand him you (A) were unwilling to commit yourself to any agreement regarding "not communicating its contents to any other person" in view of the fact that you felt you already knew certain of the things

The last two pentances were omitted from the "Second Little". Soe footnote 11 Schow: -W.F.F.

probably already referred to in the letter, as suggested to you by seeing the word "cryptograph," and (B) you could not feel that such a letter as this to a Presidential candidate could have been addressed to you by an officer in my position without the knowledge of the President.

As to (A) above I am quite willing to have you read what comes hereafter with the understanding that you are bound not to communicate to any other person any portions on which you do not now have or later receive factual knowledge from some other source than myself. As to (B) above you have my word that neither the Secretary of War nor the President has any intimation whatsoever that such a letter has been addressed to you or that the preparation or sending of such a communication was being considered.

I assure you that the only persons who saw or know of the existence of either this letter of my letter to you dated Sept. 25 are Admiral King, seven key officers responsible for security of military communications, and my secretary who typed these letters.

I am trying my best to make plain to you that this letter is being addressed to you solely on my initiative, Admiral King having been consulted only after the letter was drafted, and I am persisting in the matter because the military hazards involved are so serious that I feel some action is necessary to protect the interests of our armed forces.

(The second letter then repeated substantially the text of the first letter except for the first two paragraphs).

LIFE failed to note that the last two sentences in the penultimate paragraph of the "First Letter" were omitted from that paragraph in the "Second Letter," but there is no explanation for the omission. Perhaps it was simply for the sake of brevity, but this seems improbable.

In my first lecture 1814 of NEW Technical Journal No. A.C. I called attention to the fact that the account given in the TIME article gives credit to Army Cryptanalysts for providing the secret communications intelligence "which enabled our Navy to win such spectacular battles as those of the Coral Sea and Midway, and to waylay Japanese convoys," whereas the credit for the communications intelligence which enabled our Navy to win these battles was produced by Navy cryptanalysts. One cannot blame the editors of TIME for making such a bad error because the source of the error can be traced directly to Marshall's letter itself. Several years ago I asked by friend Colonel Clark, who had carried General Marshall's letter to Governor Dewey and who was at the time a high-level officer "The sentence beginning "I my ? = 22d ..." and the one beginning "This, however, is ... "were omitted.

in G-2, how such an error had crept into General Marshall's letter, and was told that the letter which had been prepared for General Marshall's signature did not meet with the General's whole-hearted approval and that the General himself had modified it. Perhaps that is how the error to which I have referred crept into A. the latter One could hardly expect General Marshall to be entirely familiar with the technical cryptanalytic details involved in what he wanted to tell Governor Devey, nor should one criticize him for not being able, in his very busy days and under very heavy pressure of events, to bear in mind or even to know about the difgerences between the enemy systems worked upon by the respective and separate Army and Mavy cryptanalytic organizations. It is of course possible, indeed, it may be a fact probable, that certain COMINT ranginging the Dattley of the Geral See and of Midway, valuable COMINT that in the cases of certain maval operations came from messages read by Army cryptanalysts, and this is what confused General Marshall & that, all the credit to the may be Touchette because of their polution of the Japantoe highest-level diplomatic story term, the one that used the so-called "Purple Code" which wasn't a "code since the period during which the disclosures of the Joint Congressional Investigation were made, disclosures which were disastrous so far as concerns the important accomplishments of the two services before and after the Pearl Harbor

attack in the field of communications intelligence, applicately has been written and is now in the public domain regarding those accomplishments, but fortunately no technical details of significance have been disclosed. Hints here and there are in abundance in the many books and articles that have been published by U. S. officers and writers since the end of World War II; but more than hints of the great part played by COMINT in U. S. military and naval successes are to be found in books and articles

published by American-efficers as well as by officers of the beaten Japanese, Ger-

man, and Italian armed forces. Time does not permit citing in this lecture many

or cityher machines.

of these hints or definite statements, but the following two are of particular interest because they concern the Battle of Midway, which is considered the one which turned the war in the Pacific from a possible Japanese victory to one of ignominious defeat:

If Admiral Yamamoto and his staff were vaguely disturbed by the persistent bad weather and by lack of information concerning the doings of the enemy, they would have been truly dismayed had they known the actual enemy situation. Post-war American accounts make it clear that the United States Pacific Fleet knew of the Japanese plan to invade Midway even before our forces had sortied from home waters. As a result of some amazing achievements by American intelligence, the enemy had succeeded in breaking the principal code then in use by the Japanese Havy. In this way the enemy was able to learn of our intentions almost as quickly as we had determined them ourselves.

* × * * The distinguished American Naval historian, Professor Samuel E. Morison, characterizes the victory of United States forces at Midway as "a victory of intelligence." In this judgment the author fully concurs, for it is beyond the slightest possibility of doubt that the advance discovery of the Japanese plan to attack was the foremost single and immediate cause of Japan's defeat. Viewed from the Japanese side, this success of the enemy's intelligence translates itself into a failure on our part - a failure to take adequate precautions for guarding the secrecy of our plans. Had the secret of our intent to invade Midway been concealed with the same thoroughness as the plan to attack Pearl Harbor, the outcome of this battle might well have been different. But it was a victory of American intelligence in a much broader sense than just this. Equally as important as the positive advancements of the enemy's intelligence on this occasion was the negatively bad and ineffective functioning of Japan intelligence.

and, in particular, the portion which refers to "the negatively bad and ineffective the functioning of Japanese intelligence." The Japanese author is a bit too severe on the Japanese intelligence organisation. I say this because their cryptanalysts were up against much more sophisticated cryptosystems than they meet or were qualified to solve. In fact, even if they had been extremely adapt in cryptanalysis it would have been of no avail - U. S. high-level communications were protected by crypto—systems of very great security.

Midway, The Battle that Doomed Japan: The Japanese Navy's Story by Matsuo
Fuchida and Matasake Okumiya, 1955, pp. 131 and 232. Admiral Morison extually "
wrote; "Midway was a victory of intelligence bravely and vicely applied."
See Morison, Admiral Samuel DE. Coral Sea, Midway and Sudmanne.
Actions, May - August 1902, 1907 of the Ristory of U.S. Navy operations.

His Parison, 1944, p. 150.

- 1

REF ID:A62839

This brings us to a phase of cryptology which is of highest importance - the

phase which deals with communications security, or CONSEC, and I shall confine mydevelopment and proself largely to its historical background in the second forces. The background

is a very broad one because it should include the background of the developments of
each of the three components of CONSEC, cryptosecurity, transmission security, and

by
physical security of cryptomaterials. But since time is limited and because I think

you would be more interested in the phases pertaining to cryptosecurity, I will omit function

for the factory of file development,
references to the interested in the other two components. And even in limiting the data

to cryptosecurity, I will have opportunity only to give some of the highlights of

phase.

the development of the items that comprise our cryptomaterials, omitting comments
on the history of the development and improvement of our techniques, procedures and
practices, all of which are extremely important.

I shall begin the story with a definition which you will find in any good English dictionary, a definition of the word "accident." You will get the point of what may seem to you right now to be merely another of my frequent digressions from the main theme, but if it be a digression I think you will nevertheless find it of interest. The word "accident" in Webster's Unabridged Dictionary is defined as follows:

- 1. Literally, a befalling.
 - a. An event that takes place without one's foresight or expectation; an undesigned, sudden, and unexpected event.
 - b. Hence, often, an undesigned and unforeseen occurance of an afflictive or unfortunate character; a mishap resulting in injury to a person or damage to a thing; a casualty; as, to die by an accident.

There are further definitions of the word but what I've given is sufficient for our purposes. But why define the word? What has it to do with COMSEC ?

During our participation in World War II, the President of the United States, accom-

military, naval, and airlian

panied by many of his highest-level assistants, journeyed several times half-way

around the world. He journeyed in safety-they met with a accident. On the other

hand, in April 1943, Admiral Isoroku Yamamoto, Commander in Chief of the Combined

Toperical to Ge

Fleet of the Japanese Navy started out on what was just an ordinary inspection trip him. Here's a good picture of the admiral (Fig. 5),

but it turned out to be a one-way trip for the Admiral. His teach was announced in who was the architect of the attack on Pearl Harbor. His deal was announced in an official Japanese Navy communique stating that the Admiral had met a glorious end

while directing operations in a naval engagement against superior enemy forces.

Ĺ

But we know that this was simply not true; Admiral Yamamoto "met with an accident" - 3 **

But some bright person it was the late Jimmy Walker, when Mayor of New York City,

Walkers comment was true in this case at least:

Admiral Yamamoto did not die pinggin by accident; he died because our Navy knew the

schedule of his trip down to the last detail so that it was possible to set up an

ambush with high degree of possible success. Here is the story as told in an inter-

esting manner by Fleet Admiral William F. Halsey, U. S. N., which book sutillad Admiral Halsey's Story: 13

I returned to Noumea in time to sit in on an operation that was smaller but extremely gratifying. The Navy's code experts had hit a jack pot; they had discovered that Admiral Isoroku Yamamoto, The Commander in Chief of the Imperial Japanese Navy, was about to visit the Solomons. In fact, he was due to arrive at Ballale Island, just south of Bougainville, precisely at 0945 on April 18. Yamamoto, who had conceived and proposed the Pearl Harbor attack, had also been widely quoted as saying that he was "looking forward to dictating peace in the White House at Washington." I believe that this statement was subsequently proved a canard, but we accepted its authenticity then, and it was an additional reason for his being No. 3 on my private list of public enemies, closely trailing Hirohito and Tojo.

Eighteen P-38's of the Army's 339th Fighter Squadron, based at Henderson Field, were assigned to make the interception over Buin, 35 miles short of Ballale. Yamamoto's plane, a Betty, accompanied by another Betty and covered by six Zekes, hove in sight exactly on schedule, and It. Col. Thomas G. lamphier, Jr., dove on it and shot it down in flames. The other Betty was also shot down for good measure, plus one of the Zekes. . . . We bottled up the story, of course. One obvious reason was that we didn't want the Japs to know that we

Admiral Helsey's Steps, McGraw-Hill, New York, 1947, pp. 155-157.

Hords a picture taken at I down a distinguished groups had brew short down and the Atlantic or the Mediterraneon. had broken their code. . . . Unfortunately, somebody took the story to Australia, whence it leaked into the papers, and no doubt eventually into Japan But the Japs evidently did not realize the implication any more than did the tattletale; we continued to break their codes.

Admiral Halsey's Story contains a good many more instances of cryptologic significance and interest to us. Other authors, both American and Japanese, cite similar instances. One Japanese author states in categorical language that Japan was defeated because of poor COMSEC on the part of the Japanese Navy and good COMINT on the part of the American Navy.

But lest you get the impression that enemy intelligence agencies had no success at all with secret communications of U. S. Armed Forces, let me tell you that they did have some success and in certain instances, very significant success.

There is not time to go into this somewhat disappointing or dissillusining statement but I can say that as a general rule the successes were attributable not to technical weaknesses in U. S. cryptosystems but to their improper use of certain low-level ones, by unskilled, a improperly or insufficiently trained cryptographic clerks. I may as well tell you right now that this has been true for a great many years, for centuries as a matter of fact, because as long ago as the year 1605

Francis Bacon, who wrote the first treatise in English on the subject of cryptology, made the following statement.

anch, that many times the back by 270)

<u>'</u>5

offener

This Arte of Cypheringe, bath for Relative, an Art of Discypheringe; by supposition unprofitable; but, as things are, of great use. For suppose that Cyphars were well mannaged, there bee Multitudes of them which exclude the Disypherer. But in regarde of the rawnesse and unskillfulnesse of the handes, through which they passe, the greatest Matters, are many times carryed in the weakest Cyphars.

when electrical and particularly radio transmission entered into the picture,
additional hazards to communications security had to be taken into account, but

many commanders have failed to realize how much intelligence can be gained merely

The Torvoo Bookes of the professance and advancement of
hearning, hondon, 1605, p. 61. This book is commonly known as
The Advancement of hearning. Some 18 years laker Bason sour no
treason to change his comment in his De Augmentis Scientiary,
and on 1623.

REF ID: A62839

of news 200 as well as from a pludy of

from a study of the procedures used in transmission, the direction and flow of Madas troffic, communications, the call signs of the transmitting and receiving stations, etc.,

all without solving the communications even if they are in cryptic form. Follow-

three paragraphs extracted ing are a comple of extracted from a document entitled German Operational Intelli-

gence, published in April 1946 by the German Military Document Section, a Combined

British, Canadian, and U. S. Staff,

[1.2., communeations intelligence or COMINT]

Signal intelligence was a chief source of information in the German Army. In the eastern theater, where there was offensive warfare primarily, the signal intelligence service was well-organized with well-defined purposes, efficient personnel, and adequate equipment. In the course of the campaign, it was reorganized to exploit to the fullest the success already experienced, and, by 1943, there existed a complete and smoothly functioning machine sufficient to meet all demands.

Most of their signal intercept success came from low echelon traffic. Armored and artillery radio nets passing operational traffic were followed closely and were one of the chief sources of signal intelligence. Artillery radio nets were given first coverage priority. Apart from messages intercepted in code or in clear, signal procedure, peculiarities of transmitting, and characteristics of Allied radio operators provided enormous assistance in helping to evaluate signal information. The Germans noticed that call signs were often the same for a unit over long periods and that even frequencies remained unchanged for weeks at a time. (p,q)

Much tactically important information was drawn from the enemy Air Force liaison net. It was assumed that an independent net served all Air Force liaison officers attached to the various headquarters and once one of these stations had been picked up and identified, it could be used to trace all other stations over a considerable area. Air Force traffic dealing with bombing targets was intercepted by Air Force units, and was sent through Maison channels to Western Theater Command. From here, over a network going down to divisions, the information would be flashed to all Army formation headquarters. Receiving sets at all levels, including division, were tuned in continually to this broadcast frequency." (P. 1)

Toportance of Signal Intelligence During the Normandy Invasion:

During the invasion, the G-2s in the West drew about 60 per cent of the operationally important information from signal intelligence. The remaining 40 percent was derived from all other fields of intelligence. The amount of information decreased during the months of mobile warfare. During the retreat, although the possibilities of obtaining information became less frequent, the amount of information from signal intelligence remained high. Most of the information was deduced from the organization of enemy radio traffic networks, from decoded messages, and from the radio nets of the enemy Air Force liaison officers who were attached to ground troops. Based upon this information the evaluation center of signal intelligence often came to conclusions which, at first, sounded hypothetical to the operational command and were therefore doubted. In 90 percent of all these cases the events verified the signal intelligence information so that eventually more credence was given to its conclusions." (\$\forall \cdot \cdot 2.2)

REF ID:A62839

A great many examples of intercepted messages of tactical content are cited in the aforementioned document, which is replete with information of deep interest, although the document was originally issued with the lowest security classification then in use (U. S. "Restricted"; British-Canadian "For official use only".) I wish there were time to quote at greater length from this useful brochure.

themselves, I hardly need reiterate what was pointed out in previous lectures as
to the profound effect of the advances in the science and art of electrical communications in the 20th Century. Those advances had a direct effect upon military
communications and an intract effect upon military cryptology. Hand-operated ciphers
and, of course, codebooks became almost obsolete mich the need for greater, speed of
Second obvious in order
cryptographic operations to match as much as possible the very great increase in

the speed of communications brought about by inventions and improvements in electric wire and padio

thus very soon

telegraphy. The need for cryptographic apparatus and machines became quite obvious but

it took quite some time to patisfy that need in a manner that

could be considered adequate speciality for mulitary communication

The history of the uncertain and development of

eryptographic dentered machines and associated materials is

long and interesting. Let us begin with a returne of the

earliest items of importance in that history.

Until the advent of electronic cipher mahcines most cryptographic apparatus concentrie such as and devices were built upon or around, circular rotating members of cipher wheels, cipher disks, etc. The very carliest of else the earliest, picture of such dieks appears in a trastise by an Italian cryptologist named Alberti whose Trattati in Cifra was written in Rome about 1470. It is the oldest tract on cryptography the world now possesses. Here's a photo of Alberti's disk (Fig. 6), but I wonth take the time to explain it except to say that the digits 1, 2, 3, 4 to coll your attention to the fact were used to encipher code groups and that the letters of the cipher or revoling alphabet were in mixed order. In Porta's book, first published in 1563 in Naples, there appear several cipher disks; and in the copy which was still given me as a gift by Colonel Fabyan they are, in working condition. Here is a picture of one of them (Fig. 7). In this version the device uses symbols as cipher characters. And apparently nobody thought up anything much better for a long, long time. It seems, in fact, that not only did nobody think snything new or even some improvements on the orginal Alberti or Porta disks but those who did any thinking at all on the subject merely "invented" or "re-invented" the same thing again, and that happended repeatedly in successive generations. For instance, in Lecture No. 4 of this series you were shown a picture of the cipher disk "invented" by Major Albert Myer, the first Chief Signal Officer of the U.S. Army, who obtained a patent on his invention in 1865. Here's a picture of the patented disk (Fig. 8) and the explanation of 44 (Fig. 9). And you will remember that signalmen of the Confederate Signal Corps mechanized the old Vigenère Square and put it out in the form of a cylinder (see Figs. 13, 14 and 15 of Lecture No. IV). The cipher disk used by the Signal Corps of the U. S. Army during the decade our participation as a bolligerent in 1910 to 1920, that is, during the period including, World War I, was nothing but

white celluloid mariation of the original Alberti disk of the vintage of 1470 (except that it was even simpler them its progenitor, because in the latter the cipher alphabets produced were mixed alphabets whereas, in the Signal Corps disk, the cipher alphabets are simple reversed standard sequences. We all know that it generally takes a pretty long time to get a patent through the complex workshops of the U. S. Fatent Office, but in 1924 the ancient device was patemated in 1924 by S. H. Huntington/ (Fig. 11). Here you can see a great improvement over the Signal Corps version -- a blank is added to both sequences so Indication of word space that the space between words could be enciphered. This, as you have learned, is a fatal weakness if seen in the cipher text; in the Huntington device the spaces between words would be enciphered but the cipher text would have space signs, although they would not correspond to the actual spaces between words in the plain text. In the Huntington device the space signal in the capter feet would be a list misleading but not to an in parameted amplitamolization would poor realize that they do not actually represent "word space" in the plain text.

It is interesting to note that (in Austria) in 1936, during the days when the German National Socialists were banned as an organization, the Nazis used this variation of the old disk--it had the 10 digits on both the outer and the inner

Sir Charles Wheatstone, who invented some time before 1879 a cipher device which he called a sryptograph. He described it in a volume entitled The Scientific Papers of Sir Charles Wheatstone, published by the Physical Society of London.

Here is a picture of Wheatstone's device which is in my private collection (Fig.13).

sequences for enciphering digits (Fig. 12).

What Sir Charles did was to make the outer circle of letters (for the plain text) comprise the 26 letters of the alphabet, plus one additional character to represent "space." The inner circle, for cipher equivalents, contained only the 26 letters of the alphabet and these could be disarranged in a mixed sequence. and they are Two hands, like the hour and minute hands of a clock, were provided, under control of a differential gear mechanism, so that as the long or "minute" hand is advenced to make a complete circuit of the letters on the outer circle of letters on the feed of the cryptograph the short or "hour" hand advances one space or segment on the inner circle of letters on the face of the cryptograph. In Fig. 13, for Statio, Gp = Ac example, the plain text letter G is represented by the cipher letter A, If the long hand is now advanced in a clockwise direction for one revolution, Gp (the letter minisheatly to the right of Am will be represented no longer by Ac but by Go, In encipherment the long hand is its aperture always moved in the same direction (clockwise, for example) and is placed over letter on the outer ourse. according to the the successive letters of the plain-text message, the cipher equivalents being recorded by hand to correspond with the letters to which the short hand point; st each encipherment. In this way, identical letters of the plain text will be represented by different and varying letters in the cipher text, depending upon how many revolutions of the long hand intervene between the first and subsequent Thus, with the alphabete shown in Fig. 13, and with the initial setting Gp= Ac, the word will appearances of the same plain-text letter. A Correspondents must naturally agree upon the mixed alphabet used in the inner circle and the initial positions of the two hands at the beginning of the encipherment of a message. In decipherment, the until the hour hand points to operator moves the long hand, pounterclockwise, seeking the cipher letters in the which is seen through aparture at the and of immer circle, and noting the plain-text letters to which the long hand points.

Thus, in the case of the example given above, the cipies on letters x ZAABGOOM will be found to represent the in the outer circle. Word REFERENCE.

Wheatstone's cryptograph and improved it both mechanically and cryptographically. Here's a picture of the device (Fig. 14), is which it will be seen that there are now no longer the "minute" and "Hour" hands but a single hand with an opening or window that simultaneously discloses both the plain text and eigher letters, When the single hand is turned advanced eccentrically and justaposed The inner circle of segmenty is justoposed in an eccentric manus against the outer circle of segments, which are made of a substance upon which letters may be written in pencil or in ink, In this improvement on the original Wheatstone device both sequences of letters are now mixed sequences. Making the outer circle also a mixed sequence added a considerable degree of security to the cipher. When it was proposed that all the Allied armies use this device for field cryptocommunications and its security had been approved by British, French, and American cryptologists (both at GHQ-AEF and at Washington) an opportunity to agree or disagree with the assessment of these cryptologists was given me while still at the Riverbank. Laboratories. I was able to show that the modified Wheatstone cryptograph was still insufficiently secure for military purposes and the devices, thousands of which had been manufactured and issued, were withdrawn. If you are interested in the method of solution I used you will find it in Riverbank Publication No. 20, entitled Several Machin e Ciphers and Methods for their Solution, 1918. A better method of solution was devised by measure ASSESS TOPOLY

Many years leter, and almost by sheer good fortune, I learned that a cipher machine was in the museum of a contain small town in Connecticuit named.

Handen. I was interested and wrote to the cursor of the museum, requesting that he lend the device for a short period to me as principal cryptanalyst of the War Department. Imagine my astonishment and pleasure when I unpacked the apon to receipt box sent me, and found a device, beautifully made and encased in a fine mahogany

19

case, with its inventor's name, Decius Wadsworth, and the date/ 1817, engraved on the face of the machine, which was nothing but another version of the Wheatstone there are good reasons to Cryptographic. Here's a picture of it (Fig. 15). A believe the model was made by Eli Whitney. Mechanically it was similar to the British medification, except that the outer sequence had 33 characters, the inner 26, so that the differential gear instead of operating on the ratio 27 to 26 was now on the ratio 33 to 26. Thus, Decius Wadsworth, an American Army Colonel our first Chief of Ordance, and an associate of Eli Whitney, had anticipated Sir Charles Wheatstone by over 60 Army cryptologists years in this invention. He also enticipated the British by a whole contury in their modification of Wheatstone's original, because in the Wedsworth device, too, there was only one hand and both alphabets could be made mixed sequences. This is very clearly shown in Fig. 16 as regards to the outer sequence, and I believe the preture does not clearly show this take the case, so that the inner one could also be discreanged but, I em now not sure as to this point. I returned the device a good many years ago and it is now on display in the Eli Whitney Room of the New Haven Historical Society's Museum.

invented by a French Army reservist, Commendant Bazeries, who for some 10 years related but unsuccessfully tried to get the French Army to adopt it. He was not successfully tried to get the French Army to adopt it. He was not successful and included "Cryptographe Cylindrique" or a description of his device, which he called his "cryptographic cylindrique," in a book published in 1901 in Paris. 15 He had, however, described his device in an article entitled "Cryptographe a 20 rendelles—alphabets (25 letters par to alphabet)" published in 1891. 16 In this device there is a central shaft on which

¹⁵ Les chiffres secrets devoiles.

¹⁶ Comptes Rendus, Marseilles, Vol. XX, pp. 160-165.

cen be mounted 20 numbered disks on the paripheries of which are differently wised can be alphabets of 25 letters each. The disks are assembled on the what in some and then locked into position on the shaft by pushing in the locking desk at the extreme left. presuranged or key sequence. The first 20 letters of the plain text of a massage first ere aligned, as seen in Pig. 17 (JE SUIS INDECHIFFRABLE - "I am indecipherable"); the docks are then locked into position so that the whole assembly cambe revolved; and as eigher text one may select any one of the other 24, Lines of letters, at 10 one of the other 29 rows of letters are Adadas them by band on paper which are recorded. Then the next select 20 plain-text letters is aligned, etc. and then looks To decipher a message, one takes the first 20 cipher letters, aligns, them into postron on the device, (the disks having been assembled on the shaft in accordance with the prearranged or key sequence, and then one turns the whole cylinder, searching for a row of letters which form intelligible text. There will be only one such row, and the plain-text latters are recorded. Then the next 20 latters of cipher are aligned, etc.

minings Another French cryptologist, the Marquis de Vieris, showed how messages prepared by means of the Bazeries cylindrical cipher could be sholved. 17

Maybe that is why Bazeries wasn't too successful in his attempts to get the French Army to adopt his device. But in the U.S. there were apparently none who encountered either what Bazeries or de Vieris wrote on the subject. Capt. Parker Hitt, U.S. Army, whose I have mentioned in a previous lecture, in 1915 invented a device based upon the Bazeries principle but not in the form of disks mounted upon a central shaft. Instead of disks, Hitt's device used aliding strips and here is a picture of his very first model which he presented to use associates in 1923 or 1924. (Fig. 18)

But I learned about his device some time in 1917 while still at Hiverbank, and solved one challenge message put up by Mrs. Hitt, a Riverbank marking the challenge message put up by Mrs. Hitt, a Riverbank guest for a day. I didn't use anything like what I could or might have learned

¹⁷ L'art de chiffrer et de déchiffrer les dépêches secrètes, Paris, 1893 p 100.

to Mrs. Friedmin) because at that time I hadn't yet come across the de Viaris book. I solved the messagely guessing the key Mrs. Hitt employed to arrange her strip alphabets. She wasn't wise to the quirks of inexperienced cryptographic clerks; she used RIVERBANK LABORATORIES as the key, just as I suspected she would. The device she brought with her was an improved model: the alphabets were on paper strips glued to strips of wood, as seen in Fig. 19.

Capt. Hitt brought his device to the attention of the then Major Mauborgne, whom I have also mentioned in a previous lecture and who was them on duty in the Office of the Chief Signal Officer in Washington. There is some question as to whether it was Hitt who brought his device to Mauborgnes attention; Mauborgne later told me that he had independently conceived the invention and, moreover, had made a model using disks instead of strips. I have that model, a present from General Mauborgne many years later, . It is made of brass, very heavy, on the peripheries of the disks of which he had engraved the letters of his own specially-devised alphabets. In 1919, after my return to Riverbank from my service beginnings (the in the AKF, Mauborgne sent Riverbank the first 25 letters) of a set of smc 25 more messages enciphered by his device and alphabets. He also sent the same data to Major Yardley, in G-2. Nobody even solved the messages, even after a good deal of work and even after Mauborgne told us that two consecutive words in one of the challenge messages were the words "are you." Many years later I found the reason for our complete lack of success, when I came across the plain texts of those one of the rooms occupied in the old Munitions Building by messages in a dusty old file in the Office of Chief Signal Officer. Here is a picture of the beginning of the first six messages (Fig. 20). Mauborgne, when I chided him on the unfairness of his challenge messages, told me that he had not

prepared them himself -- he had an underling (Major Fowler was his name, I still

had assumed that they would contain the usual sorts of words found as the initial words of military messages. It was the complete failure by Riverbank and G-2 to solve the challenge messages that induced Mauborgue to go shead with the development of his device. It culminated in what became known as Cipher Device,

Type M-94. Here is a picture of it (Fig. 21). That device was standardized and used for at least 10 years in the Army and Navy, Manage Corps, Count Smart Transment of the appears

In 1922, a war-time colleague, the late Capt. John M. Manly (Frof. and Head of the Department of English at the University of Chicago) brought to my large attention a photostat of a holographic namescript in the collection of Jefferson Papers in the Library of Congress. It consisted of two pages entitled "The Wheel Cypher" and here is a picture of the second page (Fig. 22) showing Jefferson's basis for calculating the number of permutations afforded by the set of 36 wheels of his device. He didn't attempt to make the multiplication; he didn't have an electronic digital computer-sfor the total number is astronomical in size.

Jefferson anticipated Bazeries by over a century, and Hittig configuration of the second page.

It soon became apparent to both the Army and the Navy cryptologists that a great increase in cryptosecurity would be obtained if the alphabets of the M-94 device could be made variable instead being fixed. There began efforts in both services to develop a practical instrument based upon this principle. I won't take time to show all these developments but wild show the final form of the Army Strip Cipher Device Type, M-138-A (Fig. 23.). This form used an aluminum base into which channels were cut to hold paper cardboard strips of alphabets chich could be alideensily within the channels. It may of interest to you to learn that

such a grooved device in quantity. Mrs. Friedman succeeded—on behalf of her own devices a group in the U. S. Coast Guard. The aluminum Strip Cipher Device Type M-138-A was used from 1935 to 1940 or 1942 by the Army the Navy, the Coast Guard and the State Department. It was used as a back-up system even after the two services as well as the Department of State began employing electrical cipher machines of high speed and security.

Thus far we have been dealing with cipher devices of the so-called "handoperated" type. None of them can really be considered as being "machines," that is apparatus employing mechanically-driven members upon which alphabetic sequences sequences can be mounted so that a constantly-changing ceries of cipher alphabets are produced. We come now to a type of apparatus which can be called a machine and own macchiman such as the one shown in Fig. 24. It is called the KRYHA, the name of its German inventor, who unfortunately committed suicide a few years ago, perhaps the last improved model of machine failed to impress professional organists because he failed to make a success of his invention. The Kryha has a fixed semi-circle of letters against which is juxtaposed a rotatable circle of letters. Both sequences of letters can be made mixed alphabets (the segments are removable and interchangeable on each sequence). The handle at the right serves to wind a clock rather powerful coiled steel spring which drives the rotating member on which the letters of the inner circle are mounted. In Fig. 25 can be seen something of the inner mechanism. The large wheel at the right has segments which are open or closed, depending upon the "setting" or key. This wheel controls the angular displacement or "stepping" of the circular rotating platform upon which the letters of the cipher sequence are mounted. The initial juxtaposition of the

of the inner or moveable alphabet against the outer or fixed one as well as the composition of these alphabets is governed by some key or other prearrangement. The cipher equivalents must be recorded by hand. After each encipherment, the button you saw in the center of the penel in the preceding Fig. 24 is pushed down, the inner wheel advanced 1, 2, 3, 4 . . . parts Unstand, depending on the key, and the next letter is enciphered, etc. The pictures I've shown you apply to the latest model of the Kryha; as regreds the first model, which came on the market sometime in the 1920's, a German mathematician produced an imprecative brochure showing how many different permutations and combinations the machine afforded.

Here's a picture of a couple of pages of his dessertation (Fig. 26) but even in those days professional cryptanalysts were not tobologyressed by calculations of this sort. With modern electronic computers such calculations have become

Let us now proceed with some more complex and more secure machines. In this next alide (Fig. 27) you see a machine which represents a rather marked improvement by a Swedish cryptographic firm upon the ones shown thus far. It is mechanico-electrical machine designated as cryptographs B-211. Here for the first time you see a cryptographic machine provided with a keyboard similar to that on an ordinary typewriter. Depressing a key on this keyboard causes a lamp to light under one of the letters on the indicating bank above the keyboard. At the top of this machine can be seen four wheels in front of two rear wheels. The four front wheels are the potating elements which drive the two rear wheels, the latter are electrical commutators that serve as connection-changers to change the circuits between the keys of the keyboard and the lamps of the indicating board. There isn't time to show you the internal works which control the rotating

elements and ciphering wheels (you will see them later) but I must show you the next step in the improvement of such cryptographic machines, which made it possible to eliminate the tedious job of recording, but hand on paper, the results of encipherment or decipherment. This was done by means of a printing mechanism which was associated with the cryptographic machine. Here is a slide (Fig. 28) which shows the assembly-the B-211 connected to a Remington typewriter, modified to be actuated by impulses from the cryptographic mechine. Of course, it was natural that, the next step would be to make the recording mechanism an integral part of the cryptographic machines. This you can see in the next alide (Fig. 30), in which the four retating members referred to in connection with Fig. 27 and which control the two commutators also mentioned in connection called the "barrel" or "cages" that fraue. with Fig. 27 are clearly seen. The slide-ber mechanism at the right controls the displacements of the printing wheel in front of the slide-bar-mechanism, and causes the proper letter to be printed upon the moving paper tape seen at the front of the machine.

Now we come to the next and a very important development, one first who conceived by a European inventor. He was followed soon thereafter, but independently, by an American inventor. In this advance the circuits between the circuit changed keys of the keyboard and the lamps of the indicating board are varied by electrical, called "notors," which notate between fixed restating members called "stators." In Europe the first of such machines put upon the market for purchase by anyone desiring one is shown in the next slide (Fig. 31).

The machine was appropriately named the ENIGMA—for solution of messages enciphered

by its means was believed to be impossible, or nearly so.

If I have some doubto on this quantum? princity of unenteri in this case. Hebern began working on his first model in 1910 or 1911, although his first U.S. patent application was filed on the date off conception may be Redictor thean 1910; I do not burn what it was.

The date on which the application for a patent on a notor incidence.

Was filed in Europe is by a Danish uncenter remad.

In Fig. 1 at the left (labeled I) is seem the machine with the top cover plate closed. At the front is the keyboard; above it the indicator board, consisting of lamps underneath glass disks upon which letters have been inscribed. Above the indicator board and to the left are seen the peirpheries of four metal notched wheels, at the left a switch button which can be set to "encipher", "decipher" or "neutal" positions. At the right in Fig. 1 (labeled II), the top cover plate has been removed, exposing the internal ciphering mechanism. Three rotors or connection changers "in cascade" can be seen attached to notched rings. The rotors exempts abble and serve to change the circuits between the keys of the keyboard to the lamps of the indicator board. In such a rotor there is a circle of 26 equally-spaced contacts on the left fact and a similar circle of contacts on the fight face; wires passing through to rotor connect the contacts on the two faces, two by two, and these connections are arbitrarily made. The rotors have engraved or painted on their peripheries the 26 letters of the alphabet which letters can be seen through small windows in the cover plate, so that the rotors can be aligned to the initial key setting. At the left of the first rotor stator is a stater, on the periphery of which are also 26 letters of the alphabet. This starter also has a circle of 26 equally-spaced contacts, but / these are only on its right face and the contacts are connected by wires to 26 double-pole, double-throw switches operated by and associated with the 26 keys of the keyboard. The connections stater between the 26 contacts on the starter and the 26 switches of the keyboard are fixed. But the starter is rotatable and its position at any time can also be seen through a window, labeled 3 in Fig. 1 (I), so that the initial setting of the starter and the three rotors can be seen through the four windows. The initial settings of these four elements constitute the key wfor the starting point in ciphering operations. I used the expression "in cascade" a moment ago, in refereing to the notors, which

simply means that the current initiated by depressing a key of the keyboard passes through the stator and then through all three rotors before reaching a lamp of the indicator board. In the ENIGMA, when the current exits from the third, that is, the last rotor at the right, and them success into another stator also having a circle of 26 contacts, but these are only its left face. This stator is:fixed, or non-rotatable, and its contacts are connected, two by two, by 13 internal wires. This stator, called a reflector, serves to beturn the current, which exits from one of the 26 contacts on the right face of the third rotor, back into oncof the 25, contacts on the right face of that rotor, thence back through, contact on the left face of that rotor into a contact on the right face of the second or middle one of the rotor, sto., to a contact on the right face of that left-hand stator. The circuitry in this machine insures that if Ap-Ko, for example, then Kp-Ac, in the same position of the rotors, that is, the cipher process is reciprocal in nature. The circuitry can bee seen in Fig. 32. It also has a consequence that no letter can encipher itself, that is, Ap, for example can never be represented by Ac, no matter what position of the three rotops and the left-hand stator happens to be. The same is true of all the other 25 letters of the alphabet. The three rotors are interchangeable, so that 3x2x1 or six permutative arrangements of these rotors is the maximum possible, since in this construction the rotors cannot be inserted in an "upside-down" position. In other types of such machines the rotors are made so that they can be inserted in either a "rightside-yp" or "upside-down" position. This makes possible a maximum of 6x4x2 or 48 permutations of the three Attacks rotors. Of course, if these one more than three rotors are available, from which a selection of three can be made, the passibilities increase very considerably. The stator at the left can be moved only by hand; the reflector at their right is fixed in this model of the ENIGMA. Depressing a key of the keyboard causes the first rotor to advance one step, thus changing the

back through the rotors to the left-hand stator thus causing a second depression of the same key to produce a different equivalent. I won't take the time to tell you about how the rotors are caused to advance so that causing hetters can be enciphered before the window settings of stator and rotors return to their initial alignment. The total number is not in this case 263 or 17576 but 16,900 (26x25x26) for technical reasons which there isn't time to explain. Power for the electrical circuits is provided by small dry cells in the box at the upper right in Fig. 31 (II).

The original ENICMA enjoyed a fair degree of success in sales but it was by no means spectacular. When Hitler came into power, further sales were prohibited.

Suffice it to say that it became the basis for machines used by the German Armed Forces in World War II.

. . m about 1910, In the U. S., a California inventor named/ Hebern indepently conceived a machine Hos frist application for a US patent was filed on which he called an "electric code". Theres similar to the ENIGMA but with some important differences: the cipher alphabets produced by it were not reciprocal and, moreover, a plain-text letter could represent itself in the cipher text. Hebern managed to avoid those two weaknesses by incorporating a switch plate which could be set one way for enciphering and deciphering another way. On the other hand, not as is the case of the ENIGMA, the electrical currents made only one trave/se through the rotor rather than as is the case in the ENIGMA on the Helbern, in two, In encipherment the current want-in one-direction through the rotors and in the current goes via the same path. decipherment in the reverse direction, Here is a slide (Fig. 33) which shows Hebern's very first model, which he constructed for communications of the Ki Klux Klan. You will note that this model has but one rotor; also, the cipher machine is connected to an electric typewriter so that hand recording of results, was no longer necessary. One additional virtue of the Hebern machine was that the wirings in the rotor were variable, a feature not incorporated in the ENIGMA rotors. Hebern interested our Navy in his

-29-

large machine requiring considerable amounts of electric power and hence unsuited for Journal VOR. INO. 2, April 1960. use by small units in field operations. In the late 1930's the Army became interested in a small mechanical machine invented by a Swedish engineer named Hagelin. Modifications desired by Army were incorporated in the machine, which was called Converter M-209 and over 100,000 of them were manufactured in the years 1942-1944 by the Smith-Corona Typewriter Co. at Graton, New York. Here's a slide (Fig. 36) showing Converted M-209, which was used by all our Armed Forces in World War III, and here is another (Fig. 34). When properly used it gave a high degree of security; when improperly used, as was often the case, its security was rather illusory. This machine operates on what is termed the key-generator principle and when two or more messages are enciphered by the same key stream or portions there of, solution is relatively a simple matter but I cannot go into that now. I machines for electrical بحر

With the world and a doption of succession printing telegraph or teleprinting machines for electrical communications the need became pressing for a reliable and practical cryptographic dominants to be associated or integrated with the teleprinter. The first apparatus of this sort in the U.S., shown in this glide (Fig. 38), was that developed by the American and Telephone Co., in 1918, as a more or less simple but ingenious modification the brane principle of the modern teleprinter of its ordinary printing telegraph. First, a few explanatory words about the latter that principle employs may be useful. It is based upon what is called the "Baudot Code", that is, a system permutation of two different saments taken in groups of five are suployed in which these are suployed in which these are suployed.

in Bacon's code were as and b's, while wood but 24 of the 25,0

Bandot or 5-unit code in the form of a paper tape in which there are holes in certain positions transversely to the length of the tape. The holes are produced by a perforating mechanism; the small holes running the length of the tape are "feed-holes" by means of which the tape is advanced step by step. You will note that there are

(alphabet.) These two elements may be positive and negative currents of electricity, or the later super being often referred to as "marking" and "spacing elements responses to as "marking" and "spacing elements responses

the presence and absence of current, Here is a slide (Fig. 39) which depicts the

-42 385

perforations

five-levels on which the boles and spaces or blanks appear. The letter A, for example,

perforations on!

is represented by a hole on the 1st and 2nd levels; the 3rd, this and 5th levels remaining unperformed is represented no holes of blanks on the other three levels at an ablanks; the letter I, by holes in positions 2 and 3, etc. Toward the right-hand.

The English alphabet uses 26 1 the 32 permutations, the remaining six formutations end of the tape are two permutations labeled "letters" and "figures", respectively.

These are equivalent to the "shift" and "unshift" keys on a typewriter keyboard, for

"lower" and "upper" case. When the "letters" key is degressed, the characters

"Sturt characters," which I will now explain. He sid and 4 th characters from the right-hand

Marie Marie

43 -32-