REF ID: A40335

Batey don

This invention relates to cryptographic apparatus for autometically eneighering and deciphering messages.

An object of the investion is the provision of a cryptopreph with a keyboard for high-speed manual operation, a bank of indicating devices or electro-magnets for noting or recording the cipher
symbols of the messages as the latter are being enchybered, and for
noting or recording the plain-text letters as the messages are being
deciphered; and cartein ciphering mechanisms interposed between the
keyboard and the bank of indicating devices or electro-magnets for constantly changing the relationship between the message characters and the
cipher numbels. The invention is primarily concerned only with the
ciphering mechanism referred to above, which is of simple design but
nevertheless yields cryptograms of greet security. This ciphering
mechanism employs means which are novel in the cryptographic art in that
it involves operation along a time axis, and the exact cryptographic
results are dependent upon a time factor which is constantly changing
in an irregular magner.

The invention is described in connection with the recompanying drawings, in which :

Fig. 1 is a diagrammatic representation of the parts of the machanism together with cortain circuit arrangements;

Fig. 2 is a diagrammatic representation of means for importing uniqueness to messages even when the latter are enciphered by the same keying sequence;

Fig. 5 is a diagrammatic representation of the electrical circuits applicable to the system shown in Fig. 2; and

Fig. 4 shows an alternative scheme for one of the basic elements of the mechanism shown in Fig. 1.

Referring to Fig. 1, the principal elements consist of a keyboard 1, a bank of indicating devices 2, a rotating cipher commutator hereinefter called a rotor 5, a distributor 4, a com-wheel mechanism 5 for producing a cipher key, a permutation-translation mechanism hereinefter called a translator 6, and a switchboard 7.

The fundamental cryptographic principle of the present invention is as follows: Keyboard operation is cyclic in character and is performed with a cadence similar to that in teletype operation. During each cycle of keyboard operation, hereinafter referred to as the operating cycle, the successive alphabets of a complete set of 26 or more mixed cipher alphabets are presented in a fixed sequence, for potential employment in encipherment or decipherment. Only one of these cipher alphabets, however, is selected during each operating cycle and the selection is varied in successive operating cycles according to a very long cipher key established by means to be described.

Broadly speaking, the foregoing dryptographic operation is accomplished practically as follows: The operating cycle is divided up into 26 equal time-intervals by means of the distributor 4, and a letter may be enciphered (or deciphered) within any one of these intervals by means of the rotor 5 which is operatively coordinated with the

keyboard 1 and bank of indicating devices 2 associated with the rotor 3.

A specific time-interval is selected within each operating cycle by means of the translator 5 which is associated with the distributor 4 and the switchboard 7. The time-interval that will be selected in each case varies with successive operating cycles according to a key which is produced by the cam-wheel cipher-key mechanism 5. Each interval will yield a different result for the same letter.

the letters of the alphabet, has a corresponding number of contact of which only two are shown as at 10 and 11, corresponding to the letters 3 and 0, respectively. The bank of indicating devices 2 may take the form of glow lamps which are illuminated when current passes through them but a preferred embodiment is to have the indicating devices take the form of electro-magnets or solenoids which operate the keys of a recording typewriter, so that a printed record of the enciphered or deciphered message may be made.

The rotor 3 is a cipher-commutator wheel of form now well known in the cryptographic art. It is mounted on a rotatable shaft 12.

Pressing against rotor 3 are two stators, a left-hand stator 13 and a right-hand stator 14, each provided with a ring of 26 ball-bearing and spring contacts insulated from one another and exerting a slight pressure against the face of rotor 3. A motor 95, drawing power from source 94, drives the shaft 12 and thus the rotor 3 at a constant speed between the

stator 13 and 14. The rotor is made of bakelite or similar insulating material and consists of two faces, a left-hand face and a right-hand face made face bearing a ring of 26 contact surfaces A, B, C, . . . Z, equidistantly spaced from one another circumferentially on the outer face. Insulated conductors passing through the rotor connect the 26 contact surfaces of the left face to those of the right face, in a manner which is face reciprocal in pairs. That is, if A on the left/is connected to X on the right face, then X on the left face is connected to A on the right face. Thus, with 15 paired contacts reciprocity in the enciphering-deciphering relationship is obtained without special switching arrangements therefor,

ments or contect surfaces 15, i sulsted from one another and distributed circumferentially on the face of the distributor. A brush arm 16, on the same shaft 12 as the rotor 3, sweeps over the face of the distributor 4 at a constant rate of speed synchronous with that of the rotor 3. The rotor 3 and brush arm 16 are keyed to the shaft 12 so that these two elements are always in a fixed angular relationship with respect to the shaft 12 and cannot be angularly displaced relative to each other, due to slippege on the shaft. Arrangements may be made, however, to change the relative angular positions of the rotor and the brush arm if desired. Brush arm 16 terminates in a brush 73 which sweeps over distributor segments 15 and establishes momentary contact with mach of the latter successively. Distributor segments 15 are connected to the right-hand set of terminals 72 of switchboard 7 by a set of conductors 17, of which only a few are shown.

REF ID: A40335

The cam-wheel cipher-key mechanism 5 provides a long cipher key for cryptographic purposes. It consists of five or a multiple of five com-bearing wheels 21, 22, 23, 24, 25 of different diameters. The periphery of each wheel is divided up into equal segments to which projecting lugs serving to set as came may be attached or into which came may be inserted: the numbers of segments on the different wheels are preferably prime to one another. For example, wheel 21 may have 100 segments. wheel 22 may have 99, wheel 23 may have 97, wheel 24 may have 91, and wheel 25 may have 89. Fixed to these wheels are ratchets 26, 27, 28, 29, 30. The number of teeth in each retchet 26 to 50 corresponds with the number of segments in the com-bearing wheel with which the ratchet is associated. Pawls 31, 32, 33, 34, 35 on a rocker arm 36, which is operated by magnets 37. 38. drive the cam-bearing wheels in a stepwise manner, under control of a universal bar key-board contact 39 through power source 40. Each time a key is depressed rocker arm: 36 and the pawls 31 to 35 serve to step wheels 21 \$0 25 forward one interval. The came on the peripheries of the cambearing wheels 21 to 25 control contact levers 41, 42, 43, 44, 45 and the latter operate contacts associated therewith, 141, 142, 145, 144, and 145. At will be understood that the segments on the periphery of each wheel 21 to 25 are smooth surfaces except where a com is inserted in or affixed to the assement and each wheel may have a cam inserted in any number of the slotted segments. Contact levers 41 to 45 are therefore raised and their massociated contacts 141 to 145 are closed only when came are presented to them by the progressive movement of the wheels 21 to 25. Furthermore these contact levers 41 to 45 will be operated in permutative groupings

REF ID: A40335

so that all 32 possible Baudot-code combinations may be set up by the contacts 141 to 145, for keying purposes. Contacts 141 to 145 are connected to conductors 46 to 50 and control magnets 51 to 55, the function of which will be described presently. Now since the combearing wheels 21 to 25 are of different diameters and they all step forward one step for each depression of a key on the key-board 1, if these wheels are initially aligned at a banch mark so as to correspond to a cipher key, this initial alignment will recur only after 100 x 99 x 97 x 91 x 89 or 7,777,469,700 letters have been enciphered (or deciphered). Thus a cipher key of great length is made available for cryptographic purposes.

The translator 6 is an instrumentality well known in the set of printing telegraphy. It consists of a set of five translator bars 61 to 65 which are normally held in position by the retractile springs 56 to 60. The translator bars are slotted according to the requirements of the Saudot or 5-unit printing telegraph code, so that 32 different alignments of slots may be presented to a set of 32 stunt bars labeled 66. Only one stunt bar can drop into a specific alignment of slots and when this occurs a contact associated with the selected stunt bar is closed. Several of these contacts are shown at 67, it being obvious that there are 32 such contacts in all. These contacts 67 are connected to conductors 68 which lead to the set of 32 terminals 69 of switchboard 7.

It will now become clear that the cem-wheel cipher-key mechanism 5 serves merely to select one out of 52 circuits leading

to the terminals 69 of switchboard 7 and that this selection, being quite variable and depending upon the successive permutations set up by the cam-wheel mechanism 5, thus produces a long, variable sequence of keying circuits corresponding to keying characters and hereinafter referred to as the keying sequence.

a corresponding number of flexible conductors 70, and the latter terminate in jacks, which may be inserted into plugs 71 connected to terminals 72 on the other side of switchboard 7. There are but 26 such plugs 71 and each of them has a pair of holes for receiving jacks, but only six of these double-hole plugs will have both holes occupied by jacks. By this arrangement the 32 possible resultant keying circuits set up by translator 6 are reduced to 26, of which six will be "double-effects", that is, in six cases the same keying character may be brought about by two different Baudot permutations set up by the translator 6. Thich six keying circuits these will be depends upon the way in which the flexible conductors 70 are connected to plugs 71 at any given time. It will be seen later that no ambiguity is occasioned by the presence of a keying circuit which is of the double-effect type.

cryptographic functioning will now be described. It will be seen that the circuit from power source 18 to the keyboard 1 must pass through contact 19, which is controlled by main relay 8. Hence, depression of any key of keyboard 1 during the time contact 19 remains open will produce no effect since no power is being delivered to the keyboard 1 and hence no

circuit to the bank of indicating devices 2 is established. Let us see now upon what circumstance closure of contact 19 depends; in other words. let us see when main relay 8 will be energized. Let us consider a specific operating cycle x in the long sequence of operating cycles n . During this operating cycle brush arm 16 of distributor 4 will make a complete revolution and a corresponding complete revolution of the cipher commutator or rotor 5, will take place. This operating cycle x may be regar ed as being divided up into 26 equal time-intervals of very short duration, each corresponding to a specific angular position of the brush arm 16 and of rotor 3 in the circumferences through which these two The circuit for relay 8 includes brush 73, elements are in motion. brush arm 16, and one of the 26 segments 15 of distributor 4. Thich of the 26 segments 15 of distributor 4 will be "alive", that is, connected to power source 20 during operating cycle x depends upon the wiring at switchboard 7 and upon the particular contact of the set of 32 contacts 67 which happens to be closed during operating cycle x. The latter depends upon the specific permutation of operated and non-operated translator bers 61 to 65 of translator 6, and this depends in turn upon the specific position and composition (as regards cams) of the cam-wheel cipherkey mechanism 5. Let us essume that during this specific operating cycle x the segment designated 74 in wig. 1 is the one which is "alive". A circuit is completed as follows: power source 20, conductor 75, main relay 8. conductor 76, armature 77 and back contact 78 of relay 9, conductor 79, brush arm 16 and brush 73 of distributor 4; the brush then being on segment 74 the current continues through segment 74, conductor 80, to one of the contacts 72 of switchboard 7, and thence through the switchboard along one of the flexible conductors 70 to one of the contacts 69

on the other side of the switchboard, thence along one of the conductors 68 so that one of the contacts 67 which is closed by the selected stunt ber 66 of translator 6, finally along common return conductor 81, back to power source 20. Relay 8 is energized at the instant that brush 75 is passing over live segment 74, and since rotor 3 revolves synchronously with brush arm 16, the angular position of rotor 3 with respect to its stators 13 and 14 corresponds to the angular position of brush erm 16 at that instant. The cipher resultant produced by depressing a key on key-board 1 will be determined by the angular position of rotor 3. The reason for this is that since rotor 3 has 26 ciphering positions each yielding a completely different set of cipher resultants for the 26 character keys of keyboard 1, the specific cipher resultant for a specific keyboard character enciphered within a specific operating cycle x depends upon the specific segment of distributor 4 which is alive during that cycle.

The circuit through the kewboard 1, the rotor 3 and the bank of indicating devices 2 will now be described. Then a key 10 corresponding to the letter "E" is depressed during operating cycle x, nothing happens until brush 73 reaches segment 74 of distributor 4, for the keyboard remains "dead" until that moment. The instant that relay 8 is energized, current is delivered from power source 18 through closed contact 19 and armsture 82 of relay 8, along conductor 83 to the contacts of keyboard 1. Since contact 10 is closed, the current continues along conductor 84 to a contact on stator 13, thence through the rotor 3, which is at that instant in an angular position corresponding to that of brush arm 16, to a constast

86 on right stator 14, thence along conductor 87 to indicating device or solenoid 88, which corresponds (in this figure) to letter "?", thence along conductor 90 through slow acting relay 9, finally along conductor 91 back to power source 18. Solenoid 88 is setunted (or 17 lamps are used a lump is lighted) to indicate the cipher resultant "?" for plain-text letter "E".

Then slow-acting relay 9 is energized the circuit for main relay 8 is broken at 78 when armsture 77 is withdrawn. I mechanically controlled trip 92 engages lever 77 and holds it away from contact 75 until the universal bar on 'eyboard 1 returns to normal when the key is released, whereupon lever 77 is allowed to fall back and close 78. The purpose of this arrangement is to insure that not more than one letter will be indicated or printed per operating cycle, that is, per degression of a key on the keyboard.

Then the universal har on the keyboard I reaches the end of its downers stroke it closes contact 39, which controls the circuit to magnets 37 and 38. Rocker arm 36 is operated, causing pawls 31 to 35 to engage ratchets 26 to 30 and advancing cam-bearing wheels 21 to 25 one step forward to the next position, setting up a new Baudot parametrion of contact-levers 41 to 45, associated contacts 141 to 145, and magnets 51 to 55. A new keying character is thus established by translator 6 and the system is now ready for the next operating cycle. Even if the same key is depressed on the keyboard the equivalent produced at the bank of indicating devices will be different, unless the keying character happens accidentally to be the same as before. Continued

depression of the same key will produce a varying sequence of equivalents corresponding in length with the length of the keying sequence produced by the cam-wheel mechanism 5. This latter sequence is of great length, as has already been explained, being the resultant of the interaction of five wheels of different dismeters with different numbers of teeth, these numbers being prime to one another.

Since the connections within the rotor 5 are reciprocal in pairs, as explained, the decipherment of a message takes place by resetting the wheels of cam-wheel mechanism 5 to the initial key position, and operating the keyboard 1 to correspond with the cipher letters, whereupon the plain-text equivalents will be produced at the bank of indicating devices 2.

The mechanism shown in Fig. 1 and described in the foregoing terms is such, however, that if several messages are enciphered
by the same keying sequence they will be in the same series of cipher
alphabets, and in this case there exists a possibility of a solution by
cryptenalytic procedure. To explain what is meent by these statements
it is necessary to call attention to the fact that the cipher commutator
5 provides a set of 26 cipher alphabets and that besically the cryptographic principle of the system as described is one in which the individual alphabets of this set of 26 cipher alphabets are brought into play
in experience the termined by the keying sequence set up by the cam-wheels.
For example, suppose we consider this keying sequence to be such that for
a given key as set up on the cam-wheels the first 20 alphabets to be

brought into play are alphabet numbers 16, 4, 19, 26, 15, 3, 18, 21, 12. 6, 1, 18, 22, 7, 15, 17, 26, 2, 18, 24. Now if several messages start with the same initial cam-wheel setting, the successive letters of all these messages will be in the same sequence of cipher alphabets. and therefore the several messages may be superimposed, yielding columns of letters which are monoalphabetic in composition. Or, even if the messages do not start at exactly the same point in the keying sequence, but portions of these messages overlap one another with respect to the keying sequence, then the overlapping portions which are in the seme alphabets, may be superimposed. For example, using the seme sequence of alphabet numbers mentioned above, suppose a first nessage begins with alphabet number 16. a second message, with alphabet 4. a third one, with alphabet 19, and so on, it is merely necessary to shift the second message one letter to the right of the first, shift the third message one letter to the right of the second, and them all three messages will be properly superimposed with respect to the keying sequence: the letters in columns are now in the same cipher alphabets, and the messages are susceptible of solution by monoalphabetic principles. The proper points for superimposition can be ascertained even without a knowledge of the particular key settings for these three messages, from a detailed study of the repetitions between messages. It is necessary, therefore, in order to circumvent this possibility of superimposing messages or parts thereof so that they will be in the same keying sequence, to import a cryptographic uniqueness to the messages so as to destroy, mask, or suppress repetitions brought about by the chance encipherment of identical words by identical sequences of alphabets.

Mechanism for accomplishing this is shown in Fig. 2. Here the shaft 121 earries several cipher commutators or rotors, Sa, 5b, 5c, 5d, and Se. These rotors are separated from one another by stators 122, 125, 124, 125, each carrying rings of contacts on both faces, to provide for continuity of circuit from one rotor into the next. The contacts in these stators, as are those in stators 13 and 14, already described, are ball-bearing spring contacts and they press against the rotors so as to hold each rotor in place, and keep it from rotating on the shaft 12. except when rotatory motion is imparted to it by means to be described. The periphery of each rotor Sa to Se bears a collar 215 in which 26 gear teeth have been cut so as to engage with gear wheels 215 and 214 which are mounted on shaft 12. the latter now corresponding to shaft IR of Fig. 1. Gear wheels 215 and 214 can be independently slid sidewise along the shaft 12 and keyed into position on the shaft, by means not shown, so as to engage the toothed collars of any two of the five rotors Sa to Se, at the will of the operator. Gear wheels 215 and 214 have 26 teeth and their pitch is the same as those on the collars of rotors Sa and Se, so that the motion imparted to a rotor by wheel 213 or wheel 214 is a 1:1 drive. The shaft 12 is rotated by motor 95, as in Fig. 1; the distributor 4 of Fig. 2 is the distributor similarly numbered in Fig. 1, with the brush arm 16 and brush 75. Thus, instead of driving one rotor 3, as in Fig. 1, the motor 93 and shaft 12 may drive any two of the five different rotors Se to Se. The function of the distributor 4 and brush arm 16, is now the same as described in connection with Fig. 1, but the rotor that will be associated with these elements is now susceptible of variability.

. .

The rotors Sa to Se are to be set to a key, by aligning the letters on their peripheries at a beach march. Since there are 26 individual rotatory positions of each rotor on the shaft, there are 265 different initial settings of these rotors, each such setting providing a different set of 25 paths for the passage of electric corrents from the keyboard 1 to the bank of electro-magnets 2. The circuits from the keyboard 1 through the set of rotors 5g - g to the bank of solenoids 2 are shown diagrammatically in Fig. 5. In this figure stators 15 and 14, and rotors 5e to 5e correspond to the similarly designated stators and rotors of Fig. 2. The internal wirings of rotors 3g. 3b. 3c. and 3d are not reciprocal in pairs, as is the case with the single rotor 5 of Fig. 1, but are all random connections. The rotor Se is, however, different in its construction from the other rotors, in that it has a ring of contacts on only one face and these contacts are interconnected in pairs. Thus rotor 50 serves as a means for reversing a current coming into the set of rotors from a contact in stator 15, passing through rotors 5a, 5b, 5c, 5d, and sending it back through rotors 3d, 3e, 3b. 3a to another contact in stator 13. Stator 14 now serves no electrical function but merely as a mechanical bearing against which rotor 5e presses. Relay 8, contact 19, armature 82, and bettery 18 correspond to similarly designated elements of Fig. 1. The keys of the keyboard I now serve a double function instead of a single function as in Fig. 1. Each key operates a lever which opens a contact and closes another. For instance, when the E key is depressed contact lever 10 is withdrawn from contact 111 and makes contact at 112. When

. જુર્ડ

116ء

relay 8 is emergical a current flows from bettery 18, along spiduoter 85, contact 112, lever 10, senductor 86 to a contact 115 in stator 15, thence through the rotors and back to another contact 115 in stator 15 thence along conductor 85, lever 11, contact 115, solenoid "a", back to bettery 18. Solenoid "a" is actuated and the cipher resultant of E is u. In deciphering, assuming that the rotors are in the identical position they were in when enciphering (the cipher her being the same), on depressing the a key of the key-coard it will be seen that the following resiprocal deciphering circuit is established: Battery 18, conductor 95, contact 114, lever 11, conductor 85, contact 116 in stator 13, through and back through the rotors to contact 115, conductor 84, lever 10, contact 111, solenoid "E", back to bettery. Thus, the plain-text resultant of a is a. In this manner a reciprocal enciphering-deciphering relationship is readily established.

We will now consider the cryptographic operation of the system after the introduction of the foragoing features. The key for a message will now consist of the following elements:

- (1) The composition of the east wheels a (that is, the positions of the came on the wheels) and their initial setting or alignment at a bonch mark; the connections at switchboard 7.
 - (2) The composition of the rotors, that is their internal wirings; the relative order of rotors Sa, Sb, Sc and Sd on the shaft, and the initial setting or elignment of all the rotors at a banch mark.
 - (5) The rotors which are selected for engagement with goer wheels 212 and 214.

It becomes obvious that even if two messages are identical. letter for letter, even if they begin at exactly the same point in the keying sequence produced by the cam wheel assembly, and even if goar wheel 215 is engaged with the same rotor, so long as the setting of the rotors Se to Se on shaft 121 is different by at least one letter for these two messages, or so long as either of gear wheels 215 and 214 is set to drive different rotors, the cipher texts will be different and externally there will be no sign of the internal identity of the two texts. Furthermore, there is nothing to prevent there being three gear wheels similar to 215 instead of only two, as shown in Fig. 2. in which case three of the five rotors can be driven. And, of course, if there were say 10 rotors it would be possible to have any number up to 9 of such driving gear wheels, thus affording a very wide range for keying purposes. In other words, as now fully developed, the system provides for a multiplicity of keys, such that a uniqueness may be imported to messages even in the same cam wheel keying sequence, with a correspondingly high degree of cryptographic security.

The translator mechanism 6 in Fig. 1 may be replaced by a system of interconnected contact-levers 96, and associated paired contacts shown schematically in Fig. 4. In the latter figure, the contact levers 41 to 45 and the magnets 51 to 55 are homologous with similarly designated contact levers and magnets of Fig. 1 and serve the same function; the bars 61 to 65 of Fig. 4 are homologous with similarly designated bars of Fig. 1 and serve an equivalent function, viz., to set up, by permutative arrangements

of actuated and non-actuated bars, permutative arrangements of contactlevers operating switches to establish one of 52 different circuits to the terminals of switchboard 7. It will be seen that permutative arrangements of the contact-levers as to the left or right positions will result in selecting one of 52 paths for a current flowing from power source 20 to the switchboard 7. The magnets 51 to 55 and their associated bars 61 to 65 may be replaced by multiple-contact relays well known in the art.

Changes, modifications and equivalent arrangements are contemplated within the scope of the invention as defined by the appended claims:

I claim :

- elements, and a corresponding set of signaling elements in operative electrical connection; means including a cipher rotor mechanism for varying the connections between the character elements and the signalizing elements, and mechanism having a multiplicity of potential ciphering positions and being driven sequentially and repetitively at a uniform angular velocity through all said positions, each complete revolution of said rotor mechanism constituting a ciphering cycle and each said ciphering cycle corresponding to the time during which a key of the keyboard is depressed; and means for selecting one of said potential ciphering positions to become the operative ciphering position within a ciphering cycle.
- elements, and a corresponding set of signaling elements in operative elements, and a corresponding set of signaling elements in operative electrical connection; a cipher rotor mechanism for varying the connections between the character elements and the signaling elements, said rotor mechanism having a multiplicity of potential ciphering positions and being driven sequentially and repetitively at a uniform angular velocity through all said positions, each complete revolution of said rotor mechanism constituting a ciphering cycle and each said ciphering cycle corresponding to the time during which a key of the keyboard is depressed; means for selecting one of said potential ciphering positions to become the operating ciphering position within a ciphering cycle; and means for verying the selection with successive ciphering cycles, the letter corresponding to successive depressions of the keys of the keyboard.

- 5. In a cryptograph, a keyboard comprising a set of character elements and corresponding contacts electrically associated therewith ; an indicating mechanism comprising a set of signaling elements corresponding in number with the number of cheracter elements and in circuit relation therewith; means for establishing and varying the electrical connections between the character elements and the signaling elements, said means including a cipher rotor having therein a set of insulated sonductors, said rotor being capable of assuming a multiplicity of potential elphering positions; means for driving said rotor sequentially and repetitively at a uniform angular velocity through all said ciphering positions; each complete revolution of said rotor constituting a ciphering cycle and each said ciphering cycle corresponding to the time a key of the keyboard is depressed; means for selecting one of said potential eighering positions to become the operative eighering position within a ciphering cycle, said means comprising a distributor mechanism and a brush timed to revolve about the face of said distributor synchronously with said rotor; a circuit including a relay, which when actuated connects the keyboard for operation, said relay being controlled through said circuit in which is included the brush of said distributor mechanism; a trenslator, and a contact closed by said translator; a set of cam wheels for controlling said translator; and means for angularly displacing the respective cam wheels of said set with successive depressions of the keys of the keyboard.
- 4. In a cryptograph, a keyboard comprising a set of character elements; an indicating mechanism comprising a set of signaling elements.

both sets of elements being in circuit relation; a cipher rotor for establishing a multiplicity of connections between the character elements and the signaling elements; means for driving said rotor sequentially and repetitively through the entire series of such connections, the time required for the rotor to pass through said series of connections sorresponding to an operating cycle; a distributor the face of which is divided up into insulated segments corresponding in number with the number of character elements, and having a brush sweeping said segments synchronously with the rotor; a cam wheel mechanism for establishing a cipher key; a translator mechanism for combining the effects of said cam wheel mechanism; a switchboard for reducing the said effects to a number corresponding with the number of character elements; a source of potential; and a relay controlled by the cam wheel mechanism through the intermediacy of said translator mechanism and distributor for the purpose of connecting the keyboard to said source at a selected instant within the operating cycle.

- 5. In a cryptograph, a keyboard comprising character elements, an indicating mechanism comprising signaling elements, and a cipher rotor for establishing and automatically, rhythmically, and sequentially varying the connections between the character elements and the signaling elements; means for selecting one of a set of said connections during the time a key of the keyboard is depressed; and means for varying the selection with successive depressions of the keys of the keyboard.
- 6. In a cryptograph, a cam-wheel mechanism for establishing a cipher key sequence consisting of permutations of a plural-unit code; and

means for translating the permutations set up in said code by said cam-wheel mechanism into a limited number of single-unit keying characters.

- 7. In a styptograph, a cam-wheel mechanism for establishing a cipher key sequence consisting of permutations of a plural-unit code; means for translating the permutations set up in said code by said cam-wheel mechanism into a limited number of single-unit keying characters; and a switchboard for reducing said keying characters to a smaller number.
- 8. In a cryptograph which employs a translator assembly having permutation bars and stunt bers in operative electrical connection; means for producing a relatively long cipher key sequence composed of single-unit keying characters, said means including a cam-wheel mechanism for controlling said permutation bars; a set of contacts controlled by said stunt bars; and a distributor provided with segments which are in electrical connection with said contacts.
- 9. In a cryptograph, which employs a translator assembly having permutation bers and stunt bars in operative electrical connection; means for producing a relatively long cipher key sequence composed of single-unit keying characters, said means including a cam-wheel mechanism for controlling the permutation bars of said translator; a set of contacts controlled by the stunt bars of said translator; a circuit including a switch board; and a distributor, the segments of which are connected to said contacts through said switchboard for reducing the number of effects obtainable from the translator to the number of segments on the distributor.

REF ID: A40335

ing permutation bars and stunt bars in operative circuit arrangement;
means for producing a relatively long cipher key sequence, said means
comprising a cam wheel mechanism for controlling said permutation bars; a
set of contrats controlled by said stunt bars; a switchboard; and a
distributor having segments in electrical commection with said contacts
through said switchboard adapted to reduce the number of effects obtainable
from said translator to the number of segments on the distributor, and to
vary the connections between the contacts of the translator and the segments
of the distributor.

elements; a corresponding set of signaling elements, both sets of elements being in operative electrical connection; a set of rotatable ciphering commutators for varying the connections between the character elements and the signaling elements, each of said commutators having a multiplicity of potential ciphering positions; means for selecting one or more of said commutators to function as rotors; means for driving said a lected rotor or arctors sequentially and repetitively at a uniform angular velocity through all of their potential ciphering positions, each complete revolution of said selected rotor or rotors constituting a ciphering cycle, and each said ciphering cycle corresponding to the time during which a key of the keyboard is depressed; and means for selecting one of said potential ciphering positions to become the operative ciphering position in said ciphering cycle.

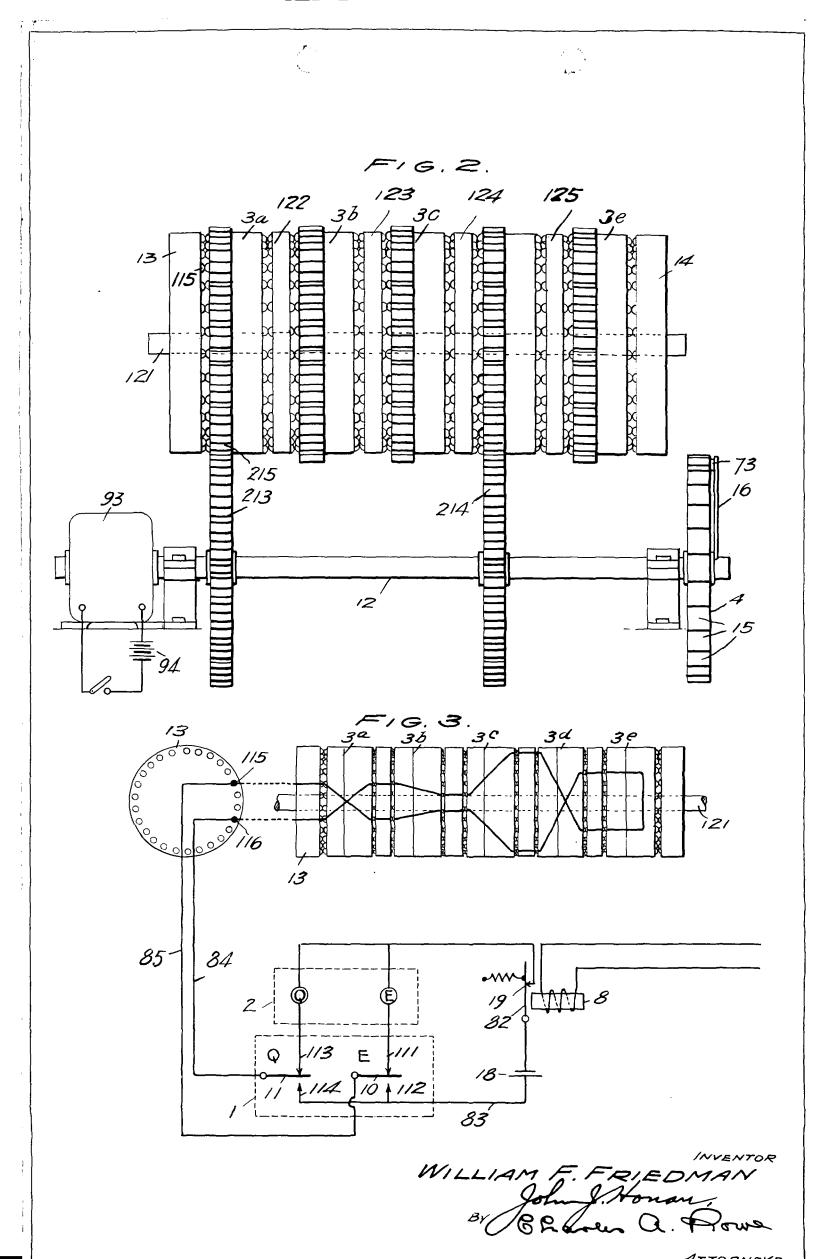
REF ID: A40335

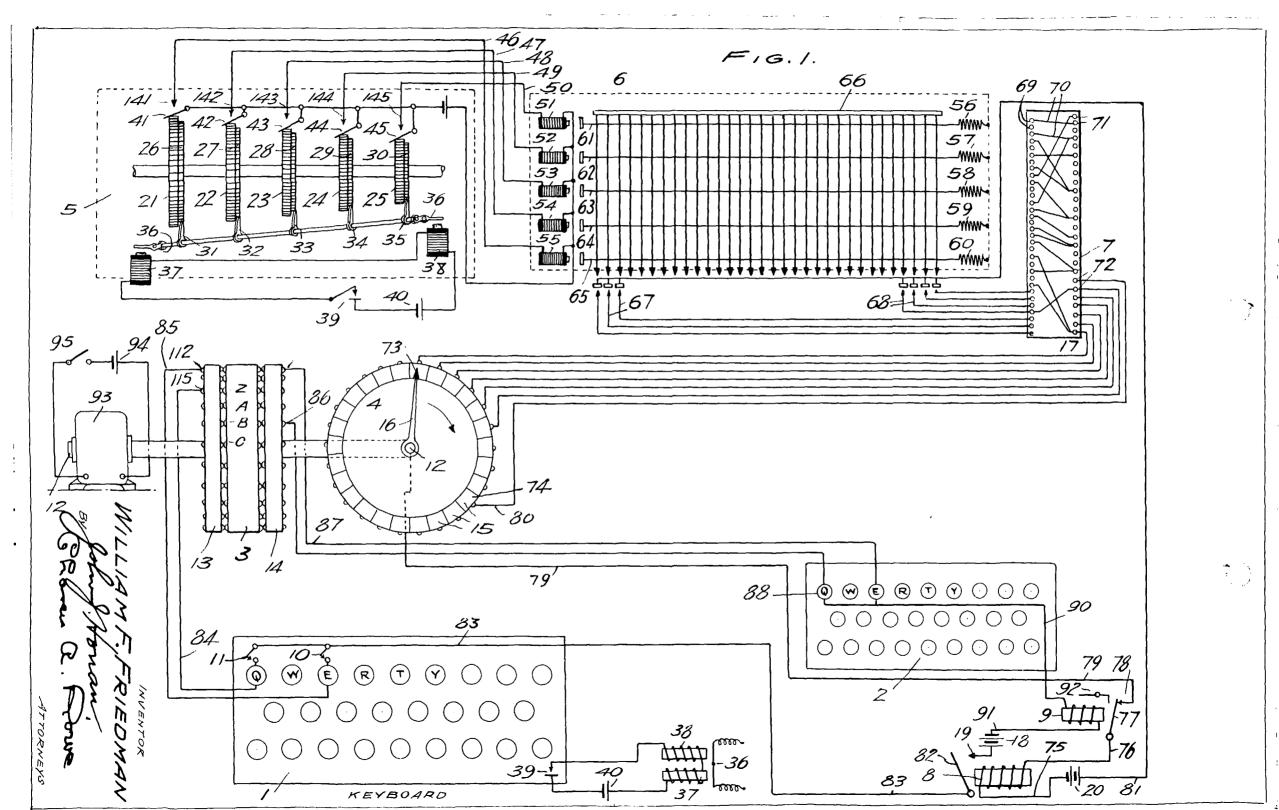
elements; a corresponding set of signaling elements, both sets of elements being in operative electrical connection; a set of rotatable elements being in operative electrical connections between the character elements and the signaling elements, each of said commutators having a multiplicity of potential elements, each of said commutators having a operating one or more of said commutators as rotors, including means for selectively operating the same sequentially and repetitively at a uniform angular velocity through all of their potential elements positions, each complete revolution of said a lested rotor or rotors constituting a ciphering cycle and each said ciphering cycle corresponding to the time during which a key of the keyboard is depressed; means for selecting one of said potential elements positions to become the operative ciphering position in said elements position with successive ciphering cycles.

elements and a corresponding set of contacts electrically associated therewith; an indicating mechanism associated with the keyboard and comprising a set of signaling elements corresponding in number with the number of character elements of the keyboard; a circuit system including said sets of elements and a source of potential; means for automatically, rhythmically, and sequentially establishing a multiplicity of sets of different paths for the passage of electric currents from the contacts of the keyboard to the signaling elements of the indicating mechanism; means for momentarily selecting one of maid sets of paths and simultaneously connecting the

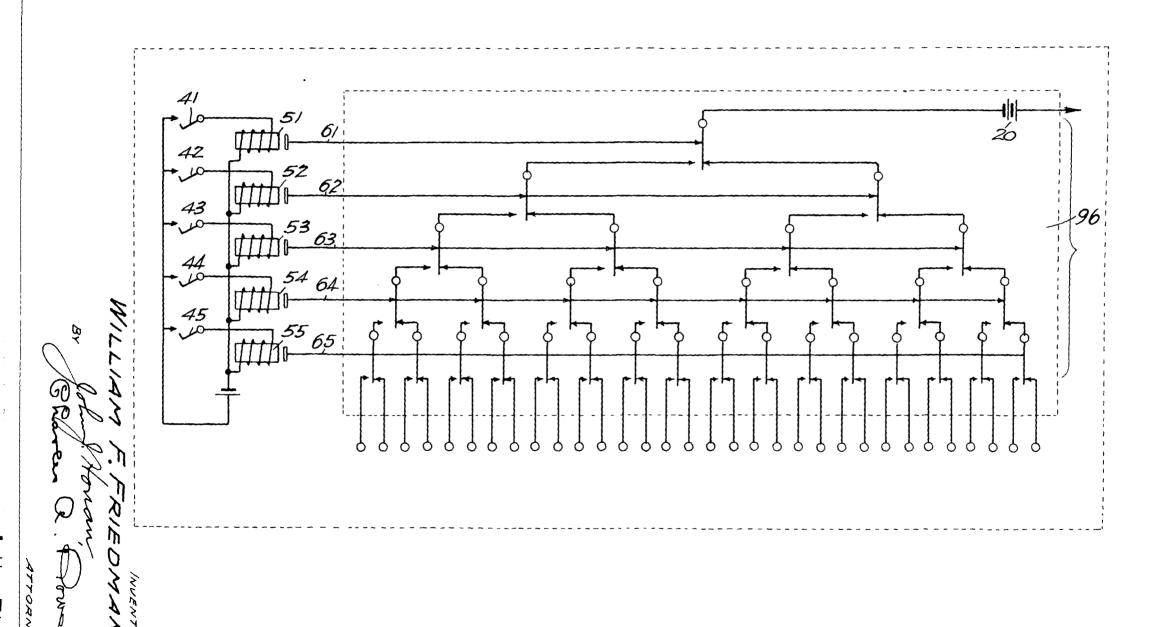
common terminal of the set of contacts of the keyboard to said source so that an electric current initiated by depressing one of the keys of the keyboard will flow along one of the paths in said selected set of paths to one of the signaling elements of the indicating machanism; and means for varying said momentary selection of a set of said paths with successive depressions of the keys of the keyboard.

elements and a corresponding set of contacts electrically associated with the character elements; an indicating mechanism associated with said keyboard and comprising a corresponding set of signaling elements; multiple sets of electric conductors, and means for rhythmically and sequentially interposing said conductors between said keyboard and said indicating mechanism; means for selecting one of said sets of conductors and establishing operative electrical connections between the contacts of said keyboard and the signaling elements of said indicating mechanism; and means for varying said selection irregularly and with successive decressions of the keys of said keyboard.


elements; a corresponding set of signaling elements in a potentially operative electrical connection with the keyboard; means comprising a rotatable commutator for varying the connections between the keyboard elements and the signaling elements; a motor to rotate the commutator at a constant speed, each complete revolution of the commutator comprising one operating cycle during which the keyboard may be operated in enciphering or deciphering; a cam-wheel mechanism comprising a set of cam-bearing rotatable members; means for angularly displacing the cam-bearing members upon operation of the


keyboard; a set of contact levers and associated contacts controlled by the cam-wheel mechanism; a translator machanism controlled by the cam-wheel mechanism for combining the effects of the cam-controlled contacts and causing the selection of one of a plurality of eigher-keying circuits; a switchboard for reducing the plurality of cipher-keying circuits to a number of circuits corresponding with the number of character elements of the keyboard; a distributor comprising a plurality of insulated segments corresponding in number with the number of observer elements of the keyboard and connected to one side of the switchboard; a brush arm carrying a brush which sweeps over the segments of the distributor, the brush arm being keyed to the sems shaft on which the commutator is rotated so that the commutator and the brush on the distributor face rotate synchronously; and a r lay controlled by said distributor for connecting the keyboard to a power course for a specific instant in the operating cycle, said instant being determined by the cipher-key combination established by the cam-wheel mechanism.

elements with associated contacts; an indicating mechanism electrically associated with the keyboard and comprising a corresponding set of signaling elements; means for connecting the contacts wit: the signaling elements and for varying said connections sequentially and rhythmically in a multiplicity of ways, said means comprising stators and including ciphering rotors which are interposed between pairs of said stators and which have a multiplicity of potentially-operative ciphering positions with respect to said stators; a shaft carrying said rotors; means for rotating one or more of said rotors at a constant angular velocity; means for momentarily


connecting the common terminal of the contacts of the keyboard in circuit relation when said selected rotors have reached a selected ciphering position, thus causing the selected ciphering position of the rotors to act as the operative ciphering position; and means for varying the selection of the driven rotors and of their operative ciphering position with successive depressions of the keys of the keyboard.

- character elements and a corresponding set of signaling elements; mechacuit system including a source of potential; means for connecting the keyboard to said source for the purpose of establishing operative electrical connection between the keyboard and the signaling elements, said means being actuated only during a specific time-interval within a set of equal time-intervals into which each cycle of keyboard operation is divisible.
- character elements and a corresponding set of signaling elements; a circuit system including a source of potential; means for connecting the keyboard to said source for the purpose of establishing operative electrical connection between the keyboard and the signaling elements, said means being actuated only during a specific time-interval within a set of equal time-intervals into which each cycle of keyboard operation is divisible; and means for changing the successive actuating time-intervals.

F1G.4.

