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WRXDD PAPER NO. ll 
I 

".IBE BLANKINSHIP CONJEC'!URE EX.AHlDD 

-; r --

J. n. Sw:Lft 
1 Auga.st 1958 
U pages 

IJhe pen.od Of' X+ 1 l.n (XJ' + 1)/x + 1 !LS determ:med 

tor ~1 pr:Lmes p < 288 for wh:Lch p J.S a prllpiulve root. Tb.l.s 

1S found to be p ~p't -~ for dl.l. amh pr:IJIIBB excapt 37, J.QL, 

197 ~ 269 :for wh:Lch J.t 1s l/3 of' tro.s val~ • '!he :f'our special 

cases gi.ve counter""8xamples f'or the COilJeCinre that the perJ.Od is 

aJ.wqs ma:x::unal. Some arguments tench.ng to show that the behanor ::J..B 

cons::J..st;ent WJ. th 'random expectat.1 on' are g:L van. 

s-110 ou 
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'WORKING PAPER NO. 11 

THE BLANKINSHIP CONJECTURE EXAMINED 

J. D. SWl.ft 
l August 1958 
ll pages 

1. IntroductJ..o~. For prl.lnes p haVJ..ng 2 as a prJ..mJ..tJ..ve root, 

the cyclotomic polynomial 

(1) ) x? + 1 f'(x ... r x+ 

is J..rreducible over GF(2). It is also eVJ.dent. that, nth respect to 

this polyno:rrua.J.., x has order p • The queatJ.on o:f tne order o:f the 

other linear polynonn.al in x , y -= x + 1 , anses. By" varJ..ous 

methods, one of which is mcluded below-, J..t l.S easy to see that the 

order o:f y is pn where n is a dlvisor of s = 'fil - 1 tihera 

m = (p - 1)/2 • 

Dr. w. A. Blankinship has conjectured that n = s always. Tins 

conjecture was based on certain empJ..rical evidence concerned with 

p < 100 • Tlte chief pu:r;pose of this paper J..S to discuss a method by 

which the proposition was mvestigated for p < 288 • In partJ..cular 

the previous evJ..dence was found t.o be fauJ. ty. The fmaJ. resu1 ts are 

that n = s for p = 3, 5, 11, 13, 19, 29, 53, 59, 61, 67, 83, 107, 

131, 139, 149, 163, 173, 179, 181, 211, 227; and that n = s/3 for 

p = 37, 101, 197, 269. 
S-110 Oll 
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Certa.J..n tables wnJ.ch were of use :tn the mvestJ.gation and, not 

bemg reachly avaJ..lable elsewhere, IIIB.Y be of some general interest, 

are J.ncluded. 

2. .:JheoretJ.c~ considerB:,~Iil. Let the notatJ..on be as m the first 

paragraph of the J.ntroduc.tJ..on. Further, let g(y) = f{x) , J..e., 

(2) ( ) {z. + l)P + 1 gy = ........ _~y~-- • 

Then defl.ne z=x+ 1 
X 

and let h(z) .. x·m f{x) • The degree of the 

polynomial h(z) is m 0 Now we Dl.d.:int-aixu The order of y WJ..th ---- --
resEect to f{x) J.S p t:Lmes the order or z WJ.th !:aspect ~ h(z). 

Proof. y 2 = {1 + x) 2 "" 1 + x2 = xz • The order of y2 J.s the 

same as the order of y smce both are certa.J.nly odd. '!he order of x 

is p ; the order of z is prime to p • Hence the order of y is 

the order of x tiires the order of z by the standard theorem on the 

orders of elements on a Galois FJ.eld. F:Lnally if h{z) divides zn - 1 

as a polynomJ.al m z , J.-r. is clear that .f1 = 1 in tr...e GF{#) 

defined qy f(x) • 

Thus t..'le basic problem J.S reduoed to the evaluat:Lon of the order of z 

with respect to h(z) or, J.n other te:rnts, to fJ.ndmg the period 

of h(z) • 

Blanldnsh.J.p' s conjecture J.S equJ.valent to the statements h(z) 

is pr:tlTIJ.tJ.ve irreducible. Now h( z) is certa.J..:nly J.rreduc.Lble for 
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all degrees under consJ.derat:J..on.. Indeed h(z) may be :trreduc:tble 

When f(x) is reduc:tble., Th:ts :ts the case, f'or example, when p = 7 • 

The condJ.t:ton for reduc:tbility of' h(z) is that the correspondmg 

f'(x) have a proper ~tne d:tv:tsor. Thus m some vague sense h(z) 

is 'more than irreduro.ble • and thJ.s :tdea gives some credence to tne 

conject.ure. It has, however.P been the generally observed f.aet that 

there J.S no Sl.mple c}l..aractenzation af prl.Illl. tl.Ve polynonu.als any more 

than there l.S a s:unple numencal function wh:tch always y:Lelds pi"J..Iles. 

Indeed such f'unct:Lons have a statJ.stJ..cal property know as Kronecker's 

1f.vpothesl.s whl.ch states that the observed frequency of' pr.unes will be 

as.r.mptotJ.cally equal to that expected on elementae,r frequency considera-

t:tonso 

Now how l:tkely l.B a polynomc1.J to be pr:urn.tive? The number of 

pri:rro. tJ.ve po:cynonn.al.s l.S fd(s)/m whJ.le the number of J.rreducJ.ble 

polynonn.als is 

± (zn-m 

where the q
1 

are the pr:une .factors of m • 7he ratio of these 

numbers for p "" 3, 5, ll, 13, 19, 29, and 37 is respectJ.vely, 1, 1, 

1, .67, o86, .65, .5lt... Othe1• flgures are gJ.ven m a table at the end 

of the paper. Hence J.t J.s qUJ.te reasonable that 37 should be the 

f:Lrst case of J.mpr:uliJ.. tivJ.ty. Agam the nuniber of po1.ynoiiiJ.als belongmg 

- 3 -
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to e , an admiss~ble dJ..visor of s, is ¢(e)/m • Hence it e = s/3 

the number is e:L ther 1/3 or 1/2 of the pl'lllli ti ve polyno:rro..als while 

J.f e ~ a/7 the number is ~ 1/6 of the total. Further 3 is a 

factor of 11 of the 21 co:mposJ.te numbers a considered wh:Lle 7 

(whose presumed asymptotic frequency l.S also 1/2) is a factor or only 9 

of them. FJ.ve is never a factor. 

Hence if h(z) J.S :imprl.IllJ.tive J."& J.s most l1kely to have a period 

tJ/3 • These remarks sufb.ce to suggest that the observed results are 
-

consJ.stent WJ.th a 'purely random' or 'Kronecker' behavJ.or of h(z). 

3. The computati.on~~~ To test pnlTll..tivi ty lt suffices to investigate 
S/<lj_ -

z where now the qJ. are the various prJ.me factors of s • If one 

of these is 1 mod h(z) then h(z} J.S J.mprJ.lllitlve. Further the 

perJ.Od will dJ..v~de all the s/~ wJ:u.ch y:z.eld 1 and w.Ul not dJ.:v:t.de 

those wlll.ch do not gJ.ve 1 • Thl.s enables a brief calculation of the 

period. The calculation thus requires a) The polynomals h(z) for 

the req_uJ.red p ; b) the pl""l...mes q1 ; c) the numbers s/~ ; 
S/<Ij_ 

d) z- mod h(z) • We now discuss the procedures used f'or these 

steps. 

a) Let fr(x) = ;x:r-l + xr--2 + • • • + x + 1 , for r an odd 

positive :mteger and ~(z) = x-k rr(x) for z = x + x-1 and 

k = (r - 1)/2 • Thus f'r and ~ are generahzatJ.ons of r and n 

-4-
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to all odd and all natural nunibers respectl.vely; hm(z) == h(z) o 

The important formula J.sg 

(.3) 

TI11s recursJ.On was .f':l..rst observed m a somewhat di.f.ferent context by 

BlankinshJ.p. Its proof' l.S tnvial.a 

( ) -kc 2k 2k-l > ~z =x x +x +• .. •+1 b-.f def'mi tJ.. on 

•• + x-1<: 

• ~(z) o 

Th.J.s .fornmla gives a method of computmg h(z) which J.S vastly 

SJ.J11Pler than that gl.ven by .Aloert in SCAMP Working Paper 27 o.f' 

15 Febro.a.ry 1956. Speci.f:L.caJ.ly all that is neeaed is to shJ..ft 

~-l (z) J.ef't by one and add hk_2(z) • Only" t..i.e output tJ.me limlts 

the speed. The hk(z) , k .C::. 1.hh were computed in less than two 

-5-
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lDJ..nutes on SWAC and the specJ..f:l.c val.ues required selected from the 

resultmg deck. 

b) The :factorJ..zation of numbers rf1 - 1 is found in several 

tables in Kraitcbika Introduction! 1a ~e'orie ~ !ombre,!!l, Pans, 1952. 

Smce our prJ.llles p are congruent to t 3 mod 8 (as 2 cannot be a 

quadratJ.c residue of p) , Y l.S either odd or sing~ even. Bence 

the tables on pp. 12 and 38 su.f':fieed. The :fclctonzatJ.ons are collected 

:in a tabl.e appended to this papero The prime factors were first placed 

on punched cards and converted to 4-precJ.sion bmar,r by a routme 

wrJ..tten for tlus purpose. 

c) A division routJ.ne :m 4-precJ.si.on exact terms was m-J..tteno 

This took in a number s , divided it b.r a sequence of exact dl.visors 

and punched out the quotientso Then J.t accepted the next s " If a 

non-divisor was entered the ma.ch:Lne hal ted m break-point J this :featu.ze 

guarded agamst typographJ..caJ. errors m Krai tchik or ms-punch:l.ng i!l!. 

routine b). 

d) Thl.s J.S the pr:mcipal routme and was d:LVJ.ded into two parts o 

In the first, the mput was h(z) • The routme .found, by successive 

squaring, z~ ' k = o, 1, • oe ' m ' reducing the powers mod h(z) 0 

As a check • The powers were stored, as produced, on succes· 

sive drum channels. The second port:Lon B.C.'cepted sq.ccessJ..vely the 

numbers s/~ and computed z to these powers by mul t:Lplymg 

-6-
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cons~cutiveq the prevJ.ously computed powers whl..ch appear in the binaey 

expansion of s/<l:f. • As a check on this routine s itself was en'l..ered 

and z8 = 1 computed after the liJB.XlJ'l!al proper cb:rlsors had been com~ 

pleted. 

'!he routines listed m a), b), and e) were pr:unar:t:cy- J.npUt""()utput 

rout:Lnes m the sense that the only time l:unitations were tne cyc.lic 

rates of these devices. The routines in d) were of rather short 

duratJ.on. Tl:le longest were for p = 181 at 6 ~ nn.n. with 11 dJ.visors 

and check and for p == 2ll nth 10 divisors and check, a total of 

6 min. '!'he total. ran takes just over an hour for all. primes leas than. 

288. 

However the rout me :\,s rather hard on the machme. Tlu.s seems -vo 

be due to its J,arge number of doublmg coi1111la!lds and repeated extracts 

whl.Ch cause spill and the perJ.odJ.c drum re£erenees folloW1ng VJ.olent 

spells of computing whieh produce surging. It has been necessary to 

ohoose dqs of' speciaJ.J.y good machme behavior to get the routine through. 

Three such runs have been made J on these runs the smgle case of mcon­

sJ.stenc,y or faJ.lure to cheek occurred on s/3 for p = 269 Whl.~h fai1ed 

to give 1 on the second run. Th:J s partJ.cular exponent has been run 

16 times. 

As a result of these :runs we can states h(z) is J.mpr:unJ .. tive :fo:r 

37, 101, 197, 269. It J.s h:LgbJ..y probable that the period ot h(z) for 

- 7 -

• 



REF ID:A38876 

these primes ~s s/3 • It is h~ghly probable that h(z) is pr:uro.t~ve 

for all other prl.Mes p < 288 for whl.ch 2 is a primitive root. The 

difference ~n degrees of assertion is due to the question putg Is 

thJ..s polynomial 1 ? If the probability that the machl.ne has run w~thout 

error is p (m) , the probabJ.lity that we should get tne answ-er 1 by 

mistake is (1 - p~2-m while the probabib:ty that we should get a 

value not 1 when the correct answer J.s 1 is (1 - p)(l - 211
) • The 

second ~s much greater than the fJ.rst. For the three runs, the numbers 

(1 - f>)3 2-3m are so small they can be neglected entirely. The num­

bers (1 - p)3 (1 - 21
)
3 , whJ.le small should not be totally forgott~n. 

It must be clearly understood that J.n all runs ment~oned the checks 

never fa:r..led; hence p is reasonably large. 

lll rout~nes are on f':Lle at NAR-UCLA. 
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Table 1 

p-1 
-;:-

Factors of s • 2 2 .. 1 for primes p haVJ.ng 

2 as a p:dmi tJ..ve root 

p 

3 I 1 

5 I 3 
11 t 31 
13 t 32 • 7 

19t7•73 
29 : 3 • 4.3 • 127 
37 : 33 • 7 • 19 • 73 
53 I J • 2 731 • 8 191 
59 I 233 • 1 103 • 2 089 
61 I 32 • 7 • 11 • 31 • 151 • JJl 
67 I 7 • 23 • 89 • 599 479 
83 I 13 367 • 164 511 353 

Factor~zation of s 

101 : 3 • 11 • 31 • 251 ° 601 ° 1 801 ° 4 051 
107 t 6 361 • 69 431 • 20 394 401 
J31 I 31 • 8 191 • 145 295 143 558 1ll 
139 I 7 • 47 • 178 481 • 10 052 678 938 039 

149 : 3 • 223 • 1 777 • 25 781 033 • 616 318 177 
163 I 7 • 73 • 2 593 • 71 119 • 262 657 • 97 685 839 
173 t 3 • 431 • 9 719 • 2 099 863 ° 2 932 031 007 403 
179 : 618 970 019 642 690 13 7 449 562 111 
181 : 33 • 7 • 11 • 19 • 31 • 73 • 151 • 331 • 631 • 23 311 • 18 837 001 

197 I 3 • 43 • 127 • 4 363 953 127 297 • 4 4J2 676 798 593 

211 : 7 • 31 • 71 • 127 • 151 • 337 ° 29 191 • 106 681 • 122 921 ° 152 041 
227 : 3 391 • 23 279 • 65 993 • 1 868 569 • 1 066 818 132 868 207 
269 I 3 • 7 327 657 • 193 707 721 ° 761 838 257 287 • 6 71J 103 182 899 

- 9-
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Table 2 

Polynomials h(z) for p:d.mea of wh.J.ch 2 is a prllllJ..tiVe root 

(Nota.tJ..on J.D. octal as J.D. Marsh's Tables of J.rreducJ.ble polynomaJ..s) 

3 3 

5 7 
11 67 
l3 163 
19 1563 
29 71403 
37 16 33407 
53 7156 00067 

*59 67016 00007 
61 1 63006 00003 
67 15 63006 00003 
83 6714 00346 01563 

lQl 71 56034 00000 33407 
107 670 16334 00000 03467 
131 67 14030 00014 00000 00003 

139 1560 34670 00334 00000 00067 
149 71560 00670 16334 00000 03467 
163 156 30060 00003 46014 00006 71403 
173 7140 33460 00000 06714 00346 01563 
179 67140 03460 00000 00714 03346 00163 
181 1 63340 01560 00000 00334 07156 00067 
197 715 60340 00160 00000 00000 67016 00007 
211 J. 56300 07140 33460 00000 00000 00346 01563 
227 671 40300 00016 30060 00000 00000 00000 71403 
269 71403 34600 16300 00000 03460 00000 00000 00000 00163 

*Incorrect l.n SCAMP paper 26, 15 Febo 1956, z17 omitted thereo 

-10-
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Table 3 

Frequencies or various classes or polynomials 

p m Irreducible Primitive 
pl Pa p3 pol,nomials pol;ynomials 

s 2 l 1 1 1 

ll 5 6 6 ·15 l 

l3 6 9 6 .56 .67 .67 

19 9 56 48 .44 .86 

29 14 1 161 ?56 .283 .6$ .93 

37 18 14 532 7 776 .222 .54 .38 

53 26 2 sao 795 1 719 900 ol$4 .67 .. 999 

59 29 18 .$'12 790 16 407 808 ol38 o994 

61 30 3.$' 790 267 17 820 000 .13.3 So .33 

67 33 260 300 986 2ll 016 608 .lZl -81 

83 hJ. .$3 647 lll sso 53 630 700 752 .. 098 o9996 

The third column lists the number or irreducibl.e polynomials ot degree m .. 

The fourth column lists the number or prim.J. tive polynomia1s or degree m 0 

The fJ.fth column gives the probability" that a random polynomial or 

degree m lacking a 'linear factor is irreducibl.e .. 

The sixth column gives the probabi11 ty that a random irreducible pol.y­

nomial or degree m is primJ. tive. 

The •eventh colmnn gives (where applicable) the probability' that an 

imprimitive irreducible polynomia1 has period 1/.3 the maximum .. 

-11-
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'WORKING PAPER NO. 15 

THE RAND OORPORATION1S RANDOM DIGIT GENERAIDR 

H. P • Edmundson 
18 August 19,8 
30 pages 

'!'he theoretical and design considerations of a machine to select 

decimal digits at random and punch them mto I.B.M. bookkeeping cards 

are discussed :fn this report. The heart or the mach:tne is an electronic 

binary counter which counts pulses rrom a ~dom pulse source. Period-

ically, the comter is stopped for observatl.on. 4bout 1001 000 counts 

are expected between successive observations, ~o that the last digit. of 

the total. can be considered random,. 

Analytical studies indicate that the machJ.ne is h:Lghly random in 

its selection except f'or trivial correlation between suocesstul 

selections. Experimental tests of' large n'Ulrlbers of' the digits :fJ.rst 

tabW.ated by the machine ind:Lcated no irregularities except a slight 

excess of odd over even dig! ts. Subsequent evolution in the pulae 

forming and counting circuits appears to have entirely' eliminated the 

possib:Ui ty" of this kind of bias. 

s-no 015 
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WORKING PAPER NO. 15 

mE RAND CORPORATION'S RANDOM DIGIT GENERATOR 
I 

H. P. Edmundson 
18 August 19.58 
30 pages 

Introductl.on. Lillu ted tables of random numbers have been published, 

but. :mch larger tables --in fact an inexhaust:Lble Sllpp~ of random 

numbers - are needed to avoJ.d us:mg the same tables over and over again. 

Repetitious use of a table of random n"'llllbers is particularly undesirable 

'Wl. thin a single problem. 

'.lhe generation of random digit tables by hu:man or machine methods 

is not as simple as it appears. The remarks of Kendall and Snn.th112 

conceming this di.f'f'icul. t.r are pertinent: 

11It is becoming increasingly evJ.dent that sampling left 
to the d.i.scretion or a human individual is not random, 
although he may be completely unconscious of the enstence 
of bias, or :Indeed actively endeavoring to avoid it. 
House-to-house sampling, the sa:mplin~ ot crop yields, ewn 
ticket drawing have been found to give results widely 
dl.vergent from expectation ••••••• 

"It has lo~ been held that mechanical methods of producing 
random series of' integers do not JP,ve satisfactory results. 
pice-throwing, :f'or example1 to give a random series of' the 
integers 1 to 6, notoriousJ.y results in bias. Nor are 

~- G. Kendall and B. Babmgton Smith, tiRandomness and Random 
Samphng Numbers, 11 Journal. or the Royal StatJ.stical. Society", pp. 151 
and 156, Vol. CI, 1938. 

~endall and Smith, Loa. Cit., pp 1.54-156. 

S-110 OlS 
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roulette tables much better. Ka:rl Pearson hap shown by 
analysis of the gaming results at Monte Carlo that the 
odds against the absence of bias are exceed.J.ngly large. 
1he source of thl.s bias is not altogether clear, but 1f 
we exclude the poss1.bilities of deliberate falSl.fica­
tion, it would appear to ar.:t.se from smaJ..l inperfections 
in the roulette Wheel whl.ch direct the ball into some 
compartments in preference to others •••••• ·" 

Mr. Cecil Hastings of the RAND Corporation has proposed a scheme 

for accomplishl.ng the selection of digits with a hl.gh degree of random-

ness, and automatical.l.y recordl.ng them at a reasonably hi~h rate ot 

speed. A machine based on a var1.at1.on of his idea has been designed and 

constructed in the Development SectJ.on anq. put into successful operation. 

The following discuss1.on descrl.bes the operation of the maCh1ne, 

attempts to discuss its randomness analytic~ly, and mentions a few of 

the design features mtended to 1.nsure conformi.w to the theoret:J.cal 

analysis. 

'lheo~tical cons:t,derations. The two design criteria of a :machme 

intended to produce a table of random dig:L ts are 1 

1) The device should be absolutely impart:LaJ.. 

2) There should be no correlation between successive selectl.onsJ 

the machme should have no memory. 

Almost any common devi'9e one m1.gb.t name falls dow;n at one of these 

two critena. A mechanical roulette wheel, for example, satisfies 

neither reqw.rement. It is dJ..f.fl.cult to build a roulette W.eel nth such 

prec1sion that one number would not be favored over another by even one 
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percent, let alone, say, one thousandth or a percent, which would be a 

1110re nearly acceptable figure. Furthermore, if', srq, one mllion succes­

sive 61 s were thrown on a rouJ.ette wheel, a groove would be worn to the 

6 compartment. Therefore, the 6 voul.d be favored over the other 

numbers. 

Consider, however, the f'ollow:t.ng system, Figure 1, Wh1ch l.S a 

modLf'ied electronic roulette Wheel. 

Random Frequency 

Pulse Source 

ConstantF.requency 
Gatil'Jg Pulse 

Source 

I.B.M. 

Key Punch 

'-",_... Input Pt. 

GATE Output 
Tel'.llll.Ilal 

1'-"':~ Control Pt. 

Bl.nazy-Decimal 

1---E---1 Transformation 

Relays 

Pulse Shaping 

Circm.ts 

5~lace 

Figure 1 - Random ])J.g!t Selectin_g ststem 
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It is intenqed that sharp pulses from the random frequency pulse 

source should arrive at the gate at an expected frequency of! about one 

hundred thousand per second. This gate circuit is controlled by broad 

constant frequency pulses from the constant frequency gatmg pulse 

source, so that the gate allows the random pulses to pass m groups of 

about one second time durat:Lon. Each random pulse advances the position 

of the counter one digit, so that each group of random ;pulses advances 

the count about one hundred thousand dl.g:L ts. After each group o! 

pu1ses, the dig:Lt at wh.J.ch the counter rest~ is cons:Ldered to be random. 

'!'hJ.s system is closely analogous to a 32 compartment roulette wheel, 

aro'tmd wh.J.Ch the baJ.l spins about three thousand times before stopping. 

'.lhe choJ.ce of ,32 numbers results, of course, from the fact that 

~ = 32 is the number of steps in one cycle of a five place b:in~ry 
counter. For a reason to be discu,ssed later, the follonng transforma­

tion from bJ.Dary numbers to decimal digits is now used 1( this trans­

formation wa:«;~ not used or.lg:inally) • 

-4-
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TABLE I 

TRANSFORMATION FROM BINARY TO DECIMAL DIGITS 

Position in Cycle Binary Number Decimal Digit 

0 00000 p 
1 00001 1 
·2 00010 2 
3 OOOll 3 
4 00100 4 
s 00101 s 
6 00110 6 
7 OOlll 7 
8 01000 8 
9 01001 9 

10 01010 dJ.scard 
11 010ll discard 
12 01100 discard 
13 01101 discard 
14 OlllO discard 
15 Ollll dl.scard 
16 10000 discard 
17 10001 d:Lscard 
18 10010 discard 
19 10011 discard 
20 10100 dJ.scard 
21 10101 discard 
22 10110 9 
23 10lll 8 
24 11000 7 
25 11001 6 
26 11.010 5 
27 11011 4 
28 lllOO 3 
29 11101 2 
30 llllO 1 
31 lllll 0 

The impart:t.alit:r of this type :rna,chllle resul. ts f'rom the assumption 

that the pulse shapmg circuit standaraizes the shape of all pulses 

-5-



REF ID:A38876 
UNOLASSMEJ2 

it passes on to the counter, and that the level and separation of the 

standardized pulses driving the counter is sufficient to unerringly 

advance the counter one count per pulse. Even though the counter flip­

flops themselves J'IUV prefer certain positions to others, the totals 

observed on the counter are detel'JID.lled erxhirely by the number or pulses 

which come f'nlm the pulse f'ol!lllllg circuits during the measured time 

intervals. It was, however, the failure of the initial c~its to 

faithfully perfonn these £unctions that caused the im.t:Lal odd-even bias 

in the tables created. Impartiality al.so depends upon compl.ete independ­

ence or the gating pulse generator, and the random pulse generator from 

the position or the counter. This is accomplished easily by caretull.y' 

isolatmg the fields and power supplies of these different ccmponents. 

There is no ev:Ldence at present to incb.cate that the mach:fne does 

not select billary numbers w.i.th complete :i.mpart:Lal.ity. However, it wuld 

be necessar;r to sample several. mil.lion numbers to detect an od.daeven bi,s 

of as llllleh as one tenth percent. As insurance against the possibility 

that the machine m~ have an undetected bias in one of its binar.y 

counters, the peculiar transformation to decimal. dig:t ts given m Table I 

is used. Note that the tw binary numbers which transform to each deeimal 

d:L.gi t are complementary. Thus, if the flip-rJ.op controlling any one binaey 

place is biased by a certain amount, the probability or any part~cular 

decimal digit being selected is unchanged. b excess (or shortage) :ln 
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the probability or the digit bemg selected in the first ten po~tion~ 
I 

is exactly compensated by the shortage (or excess) in the probability of 

that digi-t being selected in the last ten positions. 

The effect of thl.s complimentary combinat:Lon scheme can be fomulated 

ana.J.,-tical.ly. Suppose that 0 i~ preferred over 1 in the last. bina:cy 

place by an amount 2c< , in the next place by' 2 ~ 1 in the next place by 

28 1 :ln the next place b.r 2£ , and in the first place by 2 p • The 

probability of a 0 deQima1 digit equals the probabihty of a 00000 

binary number plus the probability' o£ a 11111 b:lnary number. 

p(O) .,. (1/2 + « )(1/2 + fl)(1/2 + S)(l/2 + c )(1/2 + p) 

+ (1/2 - oc.)(1/2 - p)(1/2 - 8 )(1/2 - e )(1/2 - p) (1) 

Neglecting terms higher than the second degree leaves 

p(o) ... 1/16 + l/8f:t(3+a& +cu. + «p + ~i + rss + (3£. + (JP + ~e +~~ +lr + e.r> 
(2) 

p(l) ... 1/16 + 1/8(-o.p-Ol& -ex~ -cxp + ~s +~e.+ (3p +or + e.r) (.3) 

p(2) .. 1/16+ lJS(·lJ~+O'S +qe +~f -ru -f3E-(Jp+&e +of -tp) (4) 

etc. 

Notice'that no first degree errors remain as a result of th1s 

partacular type of transformation. 
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REF ID:A38876 
UNCLASSIFIED 

'ftle second criterion, the absence or correlation betwetm B1lccessive 

selections, is certainly satisfied by this system. Actually, it would 

be nearly impossible to intentionally control the frequency or the pulse 

source and the period or the gate switching pulse closely enough that a 

•next•• selection could be predicted, since the expected number or counts 

per gate l.nterval is 100,000. ihe following analysis indicates how 

small this correlation actually is as6ll.lldng an ideaJ. counter, random 

pulse source, and gating system. 

'!he probability ot exactq X randolll pulses occurring 1n any 

constant time interval group is 

p{K) • -t e~ t 

"Ntlere N is the expected number or pulses per group. 

(5) 

If, therefore, the count sta:rts from a digit d
0 1 the propability 

or its advancing just k digits to digit <it is 

() ~ -N pk alrre • 

!he dig:J,t '\ Would also be selected l.f the counte,J" advanced 

32 + k counts, and the probability of this happening is 

J(c+32 -fl 
p(k + 32) ... (It.,. 32)1 e • 

... 8-

(6) 

(7) 
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Similarly, the C\c digit can be selected by the count advancing k 

plus any multl.ple o:t 32 comts. Thus, the ent:J..re probability of the 

digit \: being selected after d
0 

is 

( } Nk -N If+ 32 e-N + r(<:+64 -N ( ) 
f ~ • kT e + (k + j~)f (k + 6liH e + • .. • 8 

Simplification o:t this to a finite series can be achieved by the 

use of the identity' 

Thus, 

rr- ~+32 ~+64 1 31 
kl + (k + 32H + (tc + 64)1 .. • .. = :12 t 

m=o 

31 
p(C\) ... ~e-N L 

:mao 

-ikftr 
e 

This equation reciuces easily to the fom 

i:'ll'm 
ik'T(m Ne ~ 

e !0 e 

i 'fl'm 
NeT 

e 

J.(N sin if -k~) 
e • 

• (9) 

(10) 

(11) 

Since N is about 100,000 , the term in the summation corresponding 

to m = 0 is by far the most important. Next are the two terms corres-

ponding to m • 1 and m • .31 , and the remain:mg te~s are negligible 

in comparison with these. The three retained terms can be written 

- 9 -
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[ 
N Nco~ i(N sin it- kft;) 

p(d:k) ~ ~ e·N e + e e 

Ncos¥;- i(Nsin3[; -k¥)] 
+ e e • (12) 

ff 31 'h' If'(' 311r" 
But cos lb = cos "'"!() , sin n; • - sin -n;- ; and for k an integer, 

~ n« k I5 radJ.ans J.s col.IlcideDt t with -k -n;- radians. Thus 

1 [ -N(l-co~){ i(Nsin~ -k.fo> -J.(Ns:tnilG-k~} J 
p(C\c) = ~ 1 + e e + e 

1 [ -N(1- cos') 1f ] • J2 1 + 2 e cos (N SJ.n ~ - k IO) • (13) 

Smce the cosine function can be no greater in absolute magnitude than 

unity, then thJ.s probability can differ from the perfect value of 1/32 

by" no more than 

r 
I 1 -N(1- cos") 

1/32 - p( ~) t '= IO e • (14) 

For N • 100,000 thJ.s deviatJ.on is 

11; 32 _ p(~) 1 " fo e -1001 000(1-.9807) 

(15) 
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Indeed, the correlation between successive selectJ.ons is negligible. 

~ random pulse source. The cJ.rcui try used as a random pulse 

source is a hJ.gh gain wide band noise amplifier followed by a detector 

biased so that only the noJ.se peaks above a certain l1..J.gh level are trans­

:m:t.tted through the detector into the output circuit. Figure 2 is a 

schematic of the circuits used. The source of random noise is simply 

shot effect J.n the first vacuum tube. The r-m-s value of this noise J.S 

controlled by the bias applied at the input grid. ~e overall bandwidth 

of the amplJ.fier ~s about 6 megaqycles. 

The justJ.ficatJ.on for using a hJ.ghly biased random noi~e detector 

as a ran(iom pulse source may not meet the approval of the critical 

reader. However, all that is needed from a practical standpowt J.S a 

hJ.ghly irregular and unpredictable source of pul.ses to drive the counter, 

and the bJ.ased random noise detector certainly satJ.sfies thl.s reqULrement. 

As a matter of fact, l. t can be argued that the pu;Lses generated by 

such a device are nearly ~ly random. The requ1rement of a truly 

random source would be that the probability of a pulse occurring between 

t and t + dt should be some p dt , where p is the expected 

number of pulses per second and J.S a constant entirely independent of 

the nwnber and distrJ.bution of pulses generated up to t:une t • 

Figure 3 is a typJ.cal random noise voltage signal, Wl. th one 

detected pulse shown to aJ.d m discussing the problem. 

-11-
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Figure .3. ~ Typical Random Noise Voltage Signal 

Consider the £ollow:Lng argument from thE? standpoint of an observer 

who stands at the output of the biased detector and observes only the 

detected pulses. Say, for example, that starting at the left end o£ the 

signal ot Figure ~, a pulse has not been detected £or a long time. Then 

proceeding with time to the right, the probability o£ a dete~tabl(:l pul~e 

occurr.mg between 8.!1:3" t Bl'.ld t + dt is p dt , where p J.S a constant 

d.etennined by the r-m•s level o£ the noise voltage and the bias applied 

to the detector. So far as the waitmg observer is concerned, a 

detectable pulse is just as likely to occur at one time as another. 
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Suppose that at time t a pulse is .f:inal:cy- observed. '!hen, however, 
0 

the observer is able to predict a trend for a short interval ahead. Know-

ing the intr:tnsic decB3'" behavior of the amplifier 111 question, he lmows 

that this decB3'" voltage superJ.mposed on th~ new random signal voltage 

mcreases (or decreases as the case ~ be) the probability of a detect­

able peak being observed. After At , however, the decq trend will 

have expended itself, and the probability of a pulse will remain constant 

(so far as the observer lmows) until another pulse :t.s observed. 

The length of At can be as~med to be less than one microsecond 

.f'or the amplifier in questl.on, since one-twelfth m:t.crosecond is the 

conventl.onal rule-of-thumb dec~ time estimate for a low-pass amplifier 

of six megacycles bandw.i.dth. The fact that the amplifier is actuall:y 

baqd-pass 1nstead o.f low-pass can be neglected, sdnce the rat1o of noise 

power in the mssmg low end o.f' the r:yequenc;v range to the power :in the 

band pass regLon :t.s quite small. It will become apparent later that this 
I 

divergence .f'rom pure random occurrence in an interval of one microsecond 

follonng each observed pulse is of no extra concern. The pulse fornung 

c:t.rcuits reject any pulse which falls within one llll.crosecond of a pre­

viously observed pulse anyhow • 

.:!'!!! gate circuit~ the gating pulse fenerator. The tunction of 
, 

the gate circuit and :t.ts controlling gating pulse generato:r is to 

measure out mtervals of one second during which pulses from the random 

pulse generator are amplified and passed on to the pulse shaping cJ..rcui ts. 

-14-
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Between each of these intervals should be a period of about one-tenth 

second Q.uring wluch the pulses f:rom the random pulse generator are 

blocked, and the digit at whl.ch the counter stops is read and recorded 

:in an I.B.M. card. This tiJIIl.Dg sequence is obtained easily 1:u means of 

an unsymmetrical mul.tivibrator. 

FJ.gure 4 is a schemat.l.c of thJ.s tJ.ming mltivibrator and the gate 

circuit. The gate circuit J.s ' two stage pulse amplifier WJ.th the plate 

of the second amplifier tube tied J.n common with the plate of the gating 

pulse iJ:;olation tube. NotJ.ce that when the mu.ltivibrator lJ.es with its 

right-hand tube conductJ.ng that the isolation tube J.S cut off. Thus, 

"lhe pulse amplifier works as a simple amplifier nth no interference from 

the :rnultJ.vibrator isolation tube. When the rJ.ght-hand tube is cut off, 

however, this isolatJ.on tube grid goes posJ.tive WJ.th respect to its -90 

volt cathode, pullmg J.ts plate down to a negative value. Consequently, 

the voltage is removed from the plate of the second pulse amplifier 

tube, and no pu1ses from the random pulse source can pass to trip the 

pulse f'onning circuits which follow. 

A second :multJ.vibrator isolation tube is shown :J,.n Figure 4. When 

the grid of thJ.s tube goes positive, J.ts plate current actuates the 

co'llllter reading relays and, subsequent:cy-, the I.B.M. key punch. 

!!,! pulse shapmg circuits. The pulse shaping cl.rcui ts have a 

difficult job to perform. The input pulses are of various sizes and 

shapes and occur at random in time. From these highly irregular :input 

-15-
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signals, the pulse shap:tng' oircuitp must form output pulses of standard 

sl.ze ~d shape, no two of wbJ..ch can be within one microsecond of each 

otheri' Any 1nput pulse wh:Lch comes within one mQrosecond of a previous 

pulse must be rejected. 

Although this would ord:l.nari1y be an easy func"\;ion, it. is made very 

di.f.f'l.cul t by the ngid requiremnts pl.aced upon the dependability of the 

circul.ts. The pulse shaping o1rcuits must be perfect, lest counter 

partiality b:Las the dJ.git selecting system. I£ any pulse leaks through 

the puJ,se shapl.ng circuits lill.ch is of such a &ze and shape, or is ~o 

close (1ess than on, microsecond for the counter used) to a~other pulse, 

that the counter might or mght not (accordJ.ng to its own preference) 

advance one count, then the unavoidable partial.i -cy- of the counter i tsel£ 

is al.lowed to contnbute part1al.ity to the system as a whole. The 

circuits of Figure 5 were arrived at experimentally, and appear to be 

absolutely dependable. 

-16-
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First :ln the circuit are two cascaded one-shot nmlt~vibrator 

c~rcuits (6SN7's), with a pulse width of about one micrc;>second. ihese 

circuits do the major port~on of the ~rk. Pulses wh:L.ch are too weak to 

trip the c~cuits do net get through to the output at all, and nearly 

every pulse strong enough to tr~p the c~rcui t produces a standard one 

:nn.crosecond pulse. Some complications, however, occur. For example, when 

two strong pulses occur just about one microsecond apart, the second 

pulse may catch the one-shot nru.lt~vi.brator circuit just as it J.S resetting 

and produce something different from the standard pulse shape. 

The .f:Lnal ~nsurance aga:Ulst UTegularities ~s a relatively fast flip­

flop circuit of 6AK5 1 s dr:t.ven at the cathode of one of the 6AK5 1 s by 

a 6L6 cathode follower. ~s circuit trips to the right if the dr~ven 

cathode is made more positive than +10 vol.ts, and resets to the 1eft it 

the driven cathode is made more negative than -10 vo1ts. Thus, the 

circuit can tnp only once for each .full. pulse from the one-shot multi­

vibrators, and any sma11 ~nput ::t.rregu1ar.l.ties mll fail to trip the 6AK5 

flip-flop unl.ess they go from -10 to +10 vo1ts. There is J.ittle 

chance of troub1e with input pu1ses too c1osel.y' spaced m this circu~t, 

because the flip-flop is ver:r fast conpared to the c~rcuits which drive 

~t. The flip-flop has a rise time at its plates of about one tenth micro­

second, am stab:Llizes in an exchanged position at the end of about tw 

tenths of a microsecond. 

..I 18-
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Thus, the output of thl.s cJ.rcuit is a square wave of about one 

microsecond duratJ..on and very steep sides. It this output is di.:f'f'eren-

tiated (not shown in F1gure S ee hgu.re 6) the result will be 

;:sharp poSl..tive and negative pulses, and, obviously, no two positive pulses 

can be closer tqgether than one microl!Jepond. .AlSb, t;hese pulses will be 

of· standarl:i .. site ahd~ shape, sin6e. ~ reln-ti~l.y aluggi*h dri'ti!ng circuits 

ahead of' the 6AK> .flip-flop cannot effect its rise time appreciably. 

1!!! counter circuit. The function of the counter OJ.rcuit is to 

accurately count the pulses as they come from the pulse shapmg circuits. 

The resolving time of the ccnmter must be short compared to the one 

microsecond mJ..nJ..mum spac1ng between successive input pulses, and the 

circuits must be absolutely dependable else counter part:Lali ty might 

contr1bute part1ality to the s.ystem. 

The counting l.S done m the bmary number system because it J..S the 

natural system for electronic counters. All the binar,v places except 

the last five are disregarded, giving a count cycle of 25 = 32 steps, 

the 33rd step being identical with the 1st, the 34th step being 

identical with the 2nd, etc., etc. 

In Figure 6, the .f:Lrst two tubes are a cathode follower to isolate 

the flip-.:f'lop of F1gure 5, and a drJ..ver tube for the following flip-flop. 

Recall that the output or the flip-flop in Figure 5 is a square wave 

pul.se with ver.y steep Sl.des. 
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In the output or the cathode follower circuit this voltage is differen­

tiated by the 50 p.p. condenser into the 10,000 ohm resistor, so that 

the input to ~e 6AK6 driver tube is a sharp pos1tive pulse correspond­

mg to the front edge or the input pulse, and a sharp negat1ve pulse 

I 
correspondJ.ng to the trailing edge of the input pulse. Of course, the 

pos1tive pulse only 1s effective, since the tube is normally biased 

beyona cutoff. When thJ..s sharp positive pulse 1s applied to the driver 

tube grid, its plate conducts momentanly. 

The bas1s of the electron1c counter is a d-e fl1p-flop, a circuit 

havmg two stable positions. Note l.Il Figure 6 that if no external 

dr:Lving pulses are supplied, the 6AK5 fhp-flop would sit nth either 

its right hand tube conducting and the left hand tube cut orr, or with 

its :left hand tube conduct:J.ng and the rJ..ght hand tube cut orr. Note also 

that if the grid of the 6AK6 drivmg tube ( wh1ch is normally cut off) 

1s pu1sed with a sharp pos1tive peak causing its p1ate to conduct 

momentar:Uy that both p1ates of the 6AK5 f'lip-f1op nil be momentar1ly 

brought to almost zero voltage, and the flip-f'J..op circuit wJ..11 then 

return to the state opposite the one 1t was resting in when the drJ..ving 

pulse occurred. Tl:u.s exchange of posit1on is caused by th13 two Wmemor.v" 

condensers shown ( 20 pp.). The condenser to the formerly non-conductJ.ng 

plate has a greater v<>J.tage across it than the condenser to the conduct­

ing plate. Thus, if both plates are momentari~ reduced to nearly zero 

vo1ts, the cond13nser having the greater voltage across it causes the 
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grid or the opposite tube to be the more negative. When released, then, 

the opposite tube becomes non-conductlllg, while the formerly non­

conducting tube conducts. Eacb positive pulse from the pulse shapmg 

circuits reverses the position of the first flip-flop. 

The output of thl.s flJ.p-f'lop, then, l.S a1terna'f4e positive and 

negative steps. This ou""put is isolated by a cathode follower and 

dl.fferent:La.ted. by cl.rcul.ts similar to the differentiat:Lng circuit used 

ahead of the fJ.rst fll.p-flop. '!he result, or course, l.B again verr 
sharp positive and negatl.ve pulses, and the positive pulses are used to 

drive the second .flip-flop. Thl.s chain - flip-flop, cathode follower 

stage and drinng tube -- is repeated a total or five times. '!'he fJ.rst 

flip-flop reverses conduction tubes f'or each mput pulse. The second 

.:f1.J.p-flop in the chain reverses f'or each poSl.tive pulse f'rom the differ­

entiating circuit following the .first :,f'lip-flop - and this occurs onl7 

on every second input pulse. SJ.milarl;r, the thl.rd flip-flop reverses 

on ever,r fourth input pulse, etc., etc., and the last .flip-flop reverses 

on every SJ..Xteenth pulse. Thus, the counter cycle consists of the 

following 32 stepst 
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TABLE II - COUNTER CYGLE 

Flip-1r.Lop Position {0 for right and J. for l.e:r&J 

Step Noo $ Noo h Noo 3 Noo 2 Noo 1 

0 0 0 0 0 0 
1 0 0 I 0 0 J. 
2 0 0 0 1. 0 
3 0 0 0 J. 1. 
_4 0 0 1 0 0 
5 0 0 ]. 0 ]. 

0 0 0 J. ]. 0 

7 0 0 .=h 1 1 
_Q_ 0 .J. 0 0 0 
'I 0 J. 0 u J. 

.L_Q_ _() J. 0 J. 0 
ll 0 1. 0 1 1 
_J.2_ 0 J. J. 0 0 
_:I.J_ 0 J. 1. 0 1. 
J.4 0 1 1. 1 0 
J-5 0 1. 1. 1 1 
-J.o ]. 0 0 0 _Q_ 
1.7 J. 0 0 0 ]. 

"l.tl 1 0 0 1 0 
.:.L'I J. 9 0 _l. _J., 
2(J_ J. 0 l. 0 0 
2J. l 0 l. 0 1 I 

_2~ J. 0 ]. 1. 0 

~- 1. 0 1. 1. ]. 

24 1 1. 0 0 0 
2? _l. _1 0 0 1 
~0 .J. .. 1. 0 _1._ () 
_21 1. ]. 0 l. l. 
2ts 1 1 ~ 0 0 
29 J. J. ).. 0 l. 
30 l. J. J. _:!:_ _Q 

_;;J._ l. 1. 1 1 1. 
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~ binarr ~ deciDJa]. transformation. Table I or the section on 

theoretica1 consideratJ.ons shows the manner in which the posi tiona or 

the binary cycle are to be interpreted as decimal d:Lgi ts. It is 

desirable to "J.ndicate each of the digits by a closed ci.rcui t rather than 

by a light, voltage, or current, so tha\; any type of automatic devJ.ce 

such as an electric typewnter or I.B.M. duplicating punch may be used 

to record the selections. 'Figure 7 shows how thl.s may be accomplished 

by the use or multJ.-pole double-throw relays. 

Note that, depending upon what combination m which the relays are 

open Qr closed, ruw one --but only one --path is closed to the common 

J.nput point. If these rel~s are controlled by the posJ.tion or the d-e 

flip-.tlops of the bina:cy counter chain, then J.t is possible to determine 

by J.nspection the particular combl.nation which closes the circuit to each 

partJ.cula.r output point. In Figure 7 each of the 32 output points is 

labeled with this bina3;7 counter combination (assuming 1 to mean upper 

contacts and 0 to mean lower contacts), and the decimaJ. digit this 

combination should represent is copied from Table I • 'l'hen the two ou.t­

put points that indicate each or the decimal digits are tied to a 

common output terminaJ.. 

figure 7 shows how the rel~s a~ drJ. ven by thyratrons, the gnds 

or which are controlled by the cathode follower voltage or each or the 

five f'lip-f'lops. '!'he gatmg pulse output tube m the lower right hand 
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comer of Figure 4 closes the master relay - power relq in F1gure 7, 

f\lrnJ.shing plate voltage to the .f'ive transformation relays. Thus, the 

transrormatJ.on relays do not attempt to follow the progress or the 

electronic counter, blt merely are controlled by the counter during the 

one-tenth second mterval dur:Lng which the gate is shut and no pulses 

are driVlllg the counter. 

'!he relay-power relay-s work in conjunction with the master 

transfonnation circuit relay to prevent the application of power to the 

recording circUJ.t until all five transfonnation relvs have been g:Lven 

ample time to set in the selected combination, and to open the recording 

c:lrcui"t bef'ore fue transformation relays are released. Qtherwi~e, each 

time the gatlllg pulse occurs, the transformation !'E:!la.ys would give 

m.oment817 false circuits when they were pulll.ng in or releasing. 
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COUNTER f"LIP- FLOP CATHODE r:oLLOWEf'S (~l E FIGURE b) 

f\GURE 7- BtNARV-TO- DEC 'MAL TRANSF"ORMATION CIRCUITS 
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UNCLASSIFIED 

~ ~ monito;t'"ing cirClll.ts. Unfortunatel.y, it is J.liiPOssible to 

devise a:n.y kind of lllonitol"J.llg circuit wh1.ch will J.nd.icate whether or not 

the maehme J.S chooSJ..:pg numbers without 'bias. ~]!here are, however, a few 

s:lmp;:t.e c:l.rcuits which checlf tile performance of the components of the 

system. 

Ref'emng to F1.gure 4, note the "Test Sequence Switch 11 in the grid 

ciroui t of the 6AC7 gated pulse amplif'l.er. When this switch is closed, 

normal bias J.S app1J.ed to the grid of the 6AC7, and the c1.rcuit fUnc­

tions as a pulse amphfier. If the switch is open, however, a bias of 

-105 volts is applJ.ed to the 6AC7 grid, and the tube is completely cut 

off • Thus, no pulses from the random pulse generator can dr.ive the 

counter. Hqwever, every tJ..IJB the gatl.ng pulse clamps thJ.s 6AC7 cJ.rcuit, 

one pulse is ~rmed by the pula~ shaping cir~its 9f Figure 5 (the lead­

ing edge of tb,e gatmg pulse being sb.arp enough to tnp the pulse 

shaping multi vibrators). lli.th this happening, the counter should advance 

just one count per selection. This test sequence is valuable as a 

check on the reliability of the s,ystem fro~ the gate circui~ through 

to the output device (which J.S an I.B.M· key punch at the present time). 

Before and after each running peripd the mach:J,ne J.S set on "test 

sequence" to:r s~veral mmutes, ~d the punched cards produced are 

chedQd for errors. 

A second circuit monitors the average• rate at which pulses are 

being counted. 'rhie cJ.rcui t is a simple electronic frequency meter 
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connected to the last flip-f'lop in the counter chain. A voltage is 

generated proportJ.onal to the average .frequency or the counts and is 

indicated by a meter on the f'ront panel or the instrument (see Figu.re 8). 

Also, th:Ls voltage is used as an a...,.-c source to regulate the average 

random pulse rate to the frequency desired (about 100,000 per second) 

"tv using it as a "Control Bias" on the noise source tube in Fig. 2. 

Electro-mechanicf11 counters were installed J.n the output cJ.rcuits 

to indicate total. counts. Ten counters were connected directly across 

the out.put ternn.naJ.s or the transformation relays to indicate the total 

number of times each decimal digit is selected. .Also, two counters were 

installed to count the 11Wiiber of times the first flip-flop of the 

electrollic binary- counter indicated right and left ( 0 or 1) -- a measure 

of the impart;ialit;r or the sy-stem up to the binary selections. Recall. 

that the binary-to-decimal digJ.t transf'omation 'USed, Tabl.e 'I, yi.elds 

decimal. digits of improved impart:l8J..it;r. Thus, J.t is advisable to look 

for partiality m the bmar.r selections since partiali -cy- would be more 

evident there. 

Conolusio;ns. 

lo A machine whl.ch takes as random the last digit of the total. 

random pulses in a tixed period has been constructed and put; into 

successf'lll operation. Initially, an improbable excess of even over odd 
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selectJ..ons occurred. But, smce revisions were made in the origmal. 

circuits, no indication or partial:tty has occurred. 

2. A complimentary type or transrormKliion from btnar.r to decJ..mal 

digits is used. If partiality should exist :m the binary numbers 

selected, this particular type o:r transformation would yield decimal 

cb.gits with considerably less partiality • 

.3. The machine is completely au tomat.:tc • The unit buJ..1 t was 

connected to an I.B.M. key punch ,to compile a table or several million 

random digits. 

References 

A Million Random D:L~ts with 1001 000 Normal Deviates, The RAND 

Corporation, 195'5. 
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WORKING PAPER No. 20 

A CLASS OF MAPPINGS AND SOME EXAMPLES 

G. A. Hedlund 
28 August 1958 

This note concerns a class of mappings defined and 

studied by Rothaus (SCAMP Workmg Paper No. 25. August 30. 1957) 

and Blackwell (Ib1d and SCAMP Work1ng Paper No. 3, July 9, 1957) • 

The f1rst part of the paper develops some of the general theory. 

Most of the theorems proved are not new, though It appears that 

the proofs are. The second part of the paper g1ves some examples 

wh1ch seem to have been unknown prev1ously. 

length 

Let S denote the set of all sequences of 0 1s and l's of 
n 

n. n a pos1t1ve mteger. Any member of S 
n 

w1ll be called 

an n-block. 

Let S denote the set of all unendmg sequences of 

0 's and l 1s • Any member of S 1s a function w1th doma1n 

the set I of al11ntegers (pos1t1ve, negative or zero) and range 

s = .... 
and 

t = 
be members of S. We defme a d1stance 1n S as follows• 

d(s,s) = 0 • 
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If t + s 1 there ex1sts a least non-negatlve 1nteger k such 

or s -k f t_k 1 and we defme 

1 
d(s, t) :z k+l 

It 1s eas1ly vertfled that S , wtth th1s metr1c, 1s a Cantor 

dtscontlnuum. 

Let f be a function w1th domam S and range m 
n 

Then f defmes a mappmg g of 
m 

sm+n-1 mto Sm,as follows: Let B E sm+n-1 and let 

B = sl s 2 • • o • sm+n-1 • 

Def1ne 

and let C = t1 t 2 o • o tm Then g (B) = C. m 

S1m1larly, f def1nes a mapp1ng g of S mto 5 1 as follows 

Let s E S and let s • 

Def1ne 

and let 

t = • • • t _ 1 t0 
t1 • o • 

We defme g (s) = t. Clearly g 1s contmuous. 

A baste problem 1s to determ1ne condttlons on the 

funct10n of f wh1ch w1ll assure that the mappmg g 1s an 

onto mapp1ng, 1. e., g (S) = S. 
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Remark. g 1s an onto mappmg 1f)and only 1f, 

g (S + 1) s S fo:r all m , or, equivalently, 1f,and only 1f, m m n- m 

B be1ng any m-block, there ex1sts an (m+n-1)-block C such 

that g (C) = B o m 

The stated condition 1s obviously necessary. 

To prove the suff1c1ency, suppose that, B be1ng any 

m-block, there ex1sts an (m+n-1)-block C such that g (C) = B. 
m 

But then g (S) 1s clearly dense 1n S • S1nce S 1s compact 

and g 1s continuous, g (S) 1s compact, thus closed, and, be1ng 

dense 1n S, g (S) = S. 

Let s = •• a s _1 s 
0 

s 1 ••• belong to S. Then s 1s sa1d 

to be penod1c 1f there ex1sts a poSltlve Integer p such that 

The least such pos1t1ve 1nteger 1s the penod of s • 

Remark. If s E S 1s penod1c, then g (s) 1s penod1c. 

If s has penod w then the per1od of g (s) d1v1des QJ 0 

In the followmg 1f A 1s a set, crd (A) denotes the 

-1 number of members of A • If B E S , g (B) denotes 
m m 

the collection of all members C of S + 1 such that 
m n-

gm (C) =B. In general, 1f D 1s a subset of Sm , g~ 

(D) denotes the collection of all members E of S + 
1 m n-

such that g ( C ) E D • 
m 
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Lemma, Let the mappmg g defmed by f be an onto 

mapp1ng and let there ex1st a pos1hve mteger k such that 

-1 -1 crd g (B) = k for some m-b1ock B and crd g (A)z k m p 

for all p-b1ocks A and all pos1t1ve mtegers p. Then 

-1 crd g + (BA) = k for all p-blocks A and all pos1bve pm 

1ntegers p. 

Proof. It 1s suff1c1ent to prove that 

-1 ) -1 ( ) crd gm+l (BO = k = crd gm+l Bl • 

Let 

g~ (B) = [c1 • c 2 • •oe• ck] • 

-1 ) A member of g (BO cannot be 1dent1cal w1th a member 
m+l 

of gm;~ (Bl) • Thus crd gm;~ [BO , Bl ] 2. 2k • 

But 

and thus 

and 

gm~~ [BO,Bl]=[c1o,c2o, •••• CkO,C11,Ci, ••• , Ck1] 

-1 S1nce crd g m+l 

0 

-1 
(BO) 7 k, crd gm+l (Bl) z. k • 

1t follows that 

The conclus1on of the lemma now follows by 1nduct1on. 

- 4-
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Theorem 

crd -1 
gp {A) 

Let the mappmg g be an onto mappmg. Then 

~ 2n-l for all p-blocks A and all pos1t1ve 

1ntegers p. 

Proof. + Let I denote the set of pos1t1ve mtegers and let 

k = 
-1 

M1n crd ~ (B ) 
mEF,B ES • m 

m m 

Smce g 1s an onto mappmg, k Z 1 • Let B be an m-block 

-1 
such that crd g (B) = k. It follows from the precedmg m 

-1 
lemma that crd gp+m (BA) = k for all p-blocks A and all 

pos1tlve mtegers p. 

Let 

Then 

-1 (B) = gm • 

We recall that S denotes the set of all q-blocks and BS 
q q 

denotes the set of all (m+q)-blocks w1th 1mt1al block B. Let 

the collectlon [c1s q' a • • I ck s q] be donoted by c ; 

The set c* has k • 2q members. 
q 

Now d1fferent members of BS cannot have the same q 
-1 1nverses uqder g + and each member of BS has exactly m q q 

-1 
k 1nverses under g + mq 

-1 
Thus crd gm+q {BS ) = k· 2q , 

q 

(BS ) = c* 
q q and the mapp1ng g (C*) - BS 1s m+q q - q 

exactly k to 1 o 

- 5 -
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-1 ) Let A be an arb1trary p-block and let crd g (A :g: w. 
p 

Let q = p+n-1 • Now S conta1ns exactly w members, the 
q 

* 1mage of each of wh1ch under g 1s A. Thus m C there are p q 

exactly kw members whose 1mages under g + are blocks endmg mq 
n-1 

m A. Now BS contams exactly 2 blocks end1ng m A. Smce 
q 

* the mappmg g + • C ~ BS 1s exactly k to 1, the 1mage set 
m q q q 

* under g + of kw members of C must conta1n at least w 
m q q 

n-1 
members. It follows that 2 ~ w and the proof 1s completed. 

Theorem. Let the mappmg g be an onto mapp1ng. Then 

-1 ) ..n-1 crd g (A = ~ for all p-blocks A and all pos1t1ve 1ntegers p. 
p 

Proof. Let A be a p-block and suppose 

crd g; 1 {A) + 2n-l • 

-1 ) n-1 From the precedmg theorem we mfer that crd g (A < 2 and 
p 

-1 ( ) n-1 crd gq B .$. 2 for all q-blocks B and all pos1t1ve 1ntegers 

( ) -n+n-1 q • Now g S + 1 a S , erd S + 1 = c and p p n- p p n-

erd s B 2p • Also crd [S + 1 - g-1 (A)] > 2p+n-l - 2n-1 (2p -1) • 
p p n- p 

and 

gP [sp+n-l - g;
1 

(A)] a sP - A • 

n-1 -1 
Not more than 2 members of S - g_ (A) 

p+n-1 -p 
can 

map, under g , 1nto the same element of S - A • 
p p 

N(B. q1) .s. 2q1 - 2q1 • 2-n+1 
• 

- 6 -
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Thus 

2P - 1 = crd [S - A] ~ 2-n+1 crd [S + 
1 

- g -l (A)] > 2P - 1. 
p p n- p 

From th1s contrad1ct1on, we mfer the truth of the theorem. 

Remark, The precedmg theorem shows that the property 

that g be an onto mapp1ng lb equ1valent to the property that 

• g be no1sy 1n the sense that 1t transforms a random sequence 

(all blocks equ1d1stnbuted) 1nto a random sequence. 

Theorem. Let g be an op.to mappmg and let s E S • Then 

crd g-l (s) < zn-l 

Proof. -1 n-1 Suppose that crd g (s) > 2 • Let 

-1 
g (s) = t 1, t 2 , • o o , tk Cons1der any pan t ,t • 1 + J. 

1 J 

There ex1sts an mteger p such that the central (2p + 1)-blocks 
lJ lJ 

of t and t are not 1dentical. But then the central (2p+l)-blocks 
1 J 

of t , t 
1 J 

d1ffer for all p > p • Let p be an 1nteger such that lJ 

P > max rp
13 

1 1 ~ 1 < 3 ~k] 

Then no two of the central (2p+l) -blocks of t1 , t 2 , ••• , ~ 

are ahke. But the 1mages under gZp-n+Z of these k blocks 

are 1dent1cal. n-1 
If k > 2 , th1s contrad1cts a preced1ng theorem. 

The proof of the theorem 1s completed. 

Remark. It appears that the mu1t1phc1t1e.s of the mapp1ng g 

at d1fferent pomts may be d1fferent. It would be of mterest to 

1nvest1gate the var1ous poss1b1ht1es and character1ze them. 

- 7 -
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If g 1s an onto mapp1ng and 

s = 
-1 1s a penod1c sequence. then each member of g (s) 1s 

-1 per10d1c. Let s have penod w , let t 1 g (s) and let tJ. be 

the per 10d of t • Then 1.1. z p w • and 1 < p < 2n-l 

Proof. Let g be an onto mapp1ng. let 

s = 

be penodic w1th per1od -1 
w and let t 1 g (s) • Let p (k) be 

s 

the number of d1fferent k-blocks 1n s • Then ps (k) .S. w for 

all k By a preced1ng theorem we 1nfer that t conta1ns at 

most 2n-l6> different (k+n-1}-blocks for each pos1t1ve 

1nteger k. Thus. 1f pt (m) denotes the number of d1fferent 

n-1 
m-blocks 1n t • we have pt (m) ~ 2 OJ for all m • 

Suppose t has no period less than 2n-lw + 1 From .,. 
lemma 7. 2 (Morse and Hedlund1 Am.er1can Journal of Mathematics, 

Vol. 60, 1938, pp 815-866) pt (m) > m + 1 for all values of 

But th1s 1s true for all 

m and thus pt (m) ~m + 1 for all m n-1 Let m = 2 ~ 

n-1 ) n-1 
Then pt (2 w 2:. 2 w + 1 • contrad1ctory to 

) n-1 
p t (m .S. 2 w for all m • We mfer that t has a penod 

n-1 less than 2 w + 1 and t 1s penod1c. 

- 8 -
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Let 1.1 be the p~r1od of t • n-1 

Then IJ. .5. 2 w From 

a preced1ng theorem, there exlSts a pos1tlve 1nteger p such 

that IJ. = p w • and we have w .$ pw .$2n-l w and 1 s. p ~ ~-l 

Lemma Let m be a pos1t1ve 1nteger and let B be an 

m-block. For q ~ m , let N(B, q) be the number of q- blocks 

wh1ch conta1n B • Then 

hm 
q~ 00 

N(B, q) 

2q 
= 1 

Proof. We fust observe that N(B,q)/2q 1s a montomc 

1ncreas1ng funct1on of q. For 1f C lS a q-block wh1ch conta1ns B, 

then CO and Cl are d1fferent (q+l)- blocks each of wh1ch 

conta1ns B • Thus 

and consequently 

N(B, q+l) > 2 N(B, q) 

N(B, q+l) 
2q+l 

N(B, q) 
2q 

Thus we can assume that q = pm and 1t 1s suff1c1ent to 

prove that 

hm 
p~OO 

N(B,pm) 
2pm = 1 

Let B = B 1 , and let B1, B
2

, ••• , 
m 

Bk" k = 2 , 

be the set of all m-blocks. Any block of length, pm can be 

wr1tten as a p-block of B 1so There are kp such blockso Of 
1 

these there are (k-lf wh1ch do not conta1n B !! B 1, and 

thus kp - (k-l)p wh1ch do conta1n B. Thus 

- 9 -
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N(B,pm) > kp- (k-lf = 2mp - (Zm-1f 

and 

N(B.em) > 1 - (1 - _!_ )P 
zPm 2m 

But 

hm (1 --
1 f = 0 

p~ co -r 
and hence 

hm N(B,pm) 1 = 0 

p -> co zPm 

The proof lS completedo 

Lemma. Let B be a blocko For q 2:. n , let D denote 
q 

a part1bon of the set S of all q-blocks mto sets of q-blocks each 
q 

...n-1 conta1n1ng ~ memberso For q suff1c1ently large, all members 

of some element of the partlbon D must conta1n B as a 
q 

sub-block. 

We suppose the theorem falseo That 1s, there 

ex1sts a sequence of 1ntegers q1 < q 2 < o •• , D , D , o o. , and 
ql q2 

part1t1ons such that some member of each element of D fa1ls to 
q1 

conta1n B as a sub-block. But then the number of members of 

D wh1ch do not contam B 1s at least equal to the number of ql 

elements of D , or ql 0 Thus, unng the notatlon of 

the preced1ng lemma, we have 

- 10 -
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Th1s contrad1cts the preced1ng lemma. 

Def1n1t1on• The sequence 

s = 
1s sa1d to be trans1t1ve prov1ded every f1n1te block appears 1n s • 

Theorem. Let g be an onto mapp1ng and let s be trans1bve. 

-1 Then each member of g (s) 1s trans1t1ve. 

Proof. Let B be an arb1t.rary k-block. The collection 

g-l (A) I A E 5 defmes a part1t1on D + 1 of all (m+n-1)-blocks 
m m n-

n-1 mto sets each contam1ng 2 blocks • From the preced1ng lemma 

we 1nfer that for m suff1c1ently large there ex1sts an m-block 

-1 ) A such that each member of g (A conta1ns B • Now A m 

-1 
appears 1n s and each member of g (s) must contam an 

-1 ) g-1 (s) element of gm (A • It follows that each member of 

conta1ns B and thus 1s trans1t1ve. 

Let fn be a funcbon w1th doma1n Sn and range 1n s1 a 

and let g~) • g{n) be correspondmg mappmgs of Sm+n-l 

1nto S and 5 1nto S • respectively. Let f be a funct1on m p 

w1th domatn 5 and range m 5 and let g(p) g(p) be 
p 1 • m • 

the correspondmg mapp1ngs. 

- 11 -
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The mappmgs g~!p-l and g~) can be composed 1n 

an obv1ous fash1on to defme mapp1ngs g(p) • g(n) of 
m m+p-1 

Sm+n+p-
2 

mto Sm and thus a mapp1ng g(p) • g(n) of S mto S • 

S1mllarly there 1s def1ned a mappmg g(n/,. g(p) of S mto S • 

It 1s not necessar1ly true that g(p) • g(n) = g(n) • g(p) • 

Let s E S 

8 = 

and let 

t • 

be def1ned by 

The transformatlon + : 8 ~ t 1s called the sh1ft transformatlon. 

It 1s a homeomorph1sm of S onto S whose propertles have 

been stud1ed exten81vely (see Gottschalk and Hedlund, Topolog1cal 

Dynam1cs. Am. Math. Soc. ColloqUlum Pubhcat1on8, vol. 36, 1955, 

Ch. 12). A subset Y of S 1s 1nvanant 1f + (Y) = Y • 

It 1s easlly shown that the transformation g of S 1nto S, 

def1ned by f , commutes w1th cj», 1. e., g + = + g • 

Theorem. Let f def1ne an onto mapp1ng g of S onto S and 

and let X be a proper closed 1nvar1ant subset of S • Then 

g OQ 1s a proper closed mvar1ant subset of s. 

Proof • Suppose g 18 an onto mapp1ng and .X 1s a 

proper closed 1nvar1ant subset of S. Then X 1s compact, 

g (X) 1s compact and g (X) 1s closed. Stnce g + = + g. 

g (XJ 1s 1nvanant. 

- 12-
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Suppose g (X) = S. Let s be a tran81tlve pomt and 

let x E X such that g (x) = s • Accord1ng to a precedmg 

theorem, x must be trans1t1ve and thus X = S , contrary to 

hypothes1s. The theorem 1s proved. 

Corollary. g(p}_ g(n) 1s an onto mappmg 1f and only 1f both 

g (p) and g(n) are onto mapp1ngs. 

Proof. Clearly, 1f g(p) and g(n) are both onto mappmgs, 

the g (p t g (n) 1s an onto mappmg. 

Suppose g(p) g(n)(S) C g(p)(S) :f: contrary to the 

suppos1t1on. Thus, 1n any case, g(p) 1s onto. Now 1f g(n) 
r 

1s not onto, then g (n)(S) 1s a proper closed 1nvar1ant subset. 

Hence, by the last theorem g(p) g(n)(S) 1s a proper closed 

subset of S , aga1n contrad1ctmg the a8sumpbon that 

g (p)" g (n) 18 onto. Thus g {n) must also be onto and the secorrl 

part of the corollary 1s proved. 

The rema1nder of th1s paper 18 devoted to the determ1nat1on 

of all £unct1ons f wh1ch determ1ne onto mapp1ngs g{n) for 
n 

n ~ 4. 

The totahty of functlon8 £ wh1ch def1ne onto mapp1ngs 

1n the cases n == Z or 3 are easlly comp1led and are as 

follows. For n = 2 there are 6 such funchons of wh1ch 

three are 

" 

" 

- 13 -



REF ID:A38876 

and the other three are the duals of these, that 1s, the 

functlons obtamed by add1ng 1 to each of the funct1on values. 

For n • 3 there are 30 such functlons of wh1ch 15 are 

as follows: 

l xl 

2 x2 

3 x3 

4 Xl + X2 

5 xl + x3 

6 x2 + x3 

7 xl + x2 + x3 

8 xl + XzX3 

9 x3 + xlx2 

10 xl + x2 + x2x3 

11 xl + x3 + xl x2 

12 xl + x3 + x2x3 

13 x2 + x3 + xlx2 

14 xl + x2 + x3 + xlx2 

15 xl + x2 + x3 + x2x3 

and the other 15 are the duals of theseo 

Remark. Of the f1fteen hsted, the f1rst s1x are compos1t1ons 

of mapp1ngs for wh1ch n :s: 2 o 
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For the case n= 4 , 1t 1s con81derably more d1ff1cult 

to determme wh1ch funct1on8 determ1ne onto mapp1ng8. It 18 

known that I..f f 1s hnear 1n e1ther x1 or x
4 

, that 1s, f 

1s def1ned by 

or 
f(x1,x2 ,x3 ,x

4
) =x4 + f 4(;.x2 ,x3) , 

then the correspondmg mapp1ng 1s onto. There are 496 such 

functlons 

It 1s also known that 1f f 1s def1ned by compos1ng a 

pau of mapp1ngs of lower order (1n th1s case a 3 and a Z) then 

£ def1nes an onto mapp1ng 1f and only 1£ each of the compos1ng 

mapp1ngs 18 onto. It 1s easlly verlf1ed that there are 22 such 

composed funct1ons wh1ch are not hnear m ; or x 4 and 

wh1ch defme onto mappmgs Of these 11 are g1ven 1n the follow1ng 

table 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
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xz 

x3 

Xz + X3 

xz + x3x4 

x3 + ;xz 

; + x3 + ;xz 

Xz + x3 + XIXZ 

Xz + x3 + x3x4 

Xz + x4 + x3x4 

, + xz + x3 + xlx2 

Xz + x3 + x4 + x3x4 
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and the remammg 11 are the duals of these. 

Now a necessary and suff1c1ent cond1t1on that the mapp1ng 

g defmed by the functlon f be an onto mappmg 1S that 

-1 ) n-1 c rd g (B ;= 2 for each m-block B 1 and each pos 1tl ve 
m 

mteger m • But 1t 1s suff1c1ent (theorem due to Blackwell, 

see Rothaus 
1 

1oc. c1t.' that crCi g -l (B) = 2n-l for m • 2n-l 
m 

n-1 
and each 2 -block B. 

Th1s cr1ter10n 1s not as d1ff1cult to apply as f1rst 

appears 1f use 1s made of the follow1ng dev1ce, 1llustrated for 

the case n z 4. 

Let the set of all poss1ble 3-blocks be denoted as follows• 

(1) 

000 
001 
010 
011 
100 
101 
110 
111 

0 
1 
2 
3 
4 
5 
6 
7 

Then the 4-blocks can be denoted 

( 2) 

where 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

00 
01 
12 
13 
24 
25 
36 
37 
40 
41 
52 
53 
64 
65 
76 
77 

- 16-
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X X 
1 J 

(1, J z o. 1, z ••••• 7 • J 3 21 or 21 + 1, mod 8) 

denotes the 4-block of wh1ch the 1n1t1al 3-block 1s X 
1 

and the 

term1nal 3-block 1s x 
J 

Now for any spec1f1ed functlon f (on the 4-blocks) we 

hst under 0 , those blocks B for wh1ch f (B) • 0, and 

under 1, the complementary set. For example: 

0 1 

00 12 

01 24 

13 37 

(3) 25 41 

36 52 

40 64 
53 65 

76 77 

Any 5-b1ock B can be wntten 1n the form abc , where 

a, band c are 1ntegers from 0 to 7 • a 1s the 1nteger correspond1ng 

by (1) to the 101 tla 1 3-block of B • b 1S the 1nteger correspond1ng 

by (1) to the m1ddle 3-block of B and c 1S the 1nteger correspond1ng 

by (1) to the term1nal 3-block of B . Thus 01011 can be wr1tten 

as 253 0 

Now 1£ the 5-block B z abc 1s to map (under g
2

) 1nto 00 , 

then ab and be must appear under 0 1n (3) and th1s cond1t1on 

1s clearly suff1c1ent. It 1s thus poss1ble to obta1n the 5-blocks 

wh1ch map mto 00 by tak1ng any element ab under 0 1n {3) 

for wh1ch the second term b appears as a f1rst term and follow1ng 

- 17 -
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ab by the second term of all elements for wh1ch b 1s the fust 

termo As an 1llustrat1on we determ1ne the 5-blocks wh1ch m.::tp 

1nto 00 and 01 respectively 

00 01 -- --
000 012 

001 137 

013 252 

136 364 

253 365 

400 537 

401 764 

536 765 

The process can be cont1nued 1n an obv1ous fash1on. The 

7-blocks wh1ch map 1nto 0000 are 

0000 

00000 

00001 

00013 

00136 

40000 

40001 

40013 

40136 • 

But 1t should be noted that 1n contmu1ng th1s process, 1t 1s only 

the d1g1ts {representing 3-blocks) wh1ch appear at the ends wh1ch 

are of concern to us and the 1ntermed1ate ones can be suppressedo 

We hst, m terms of the1r termmal 3-blocks only, the blocks wh1ch 

map mto 0, 00, 0000, 00000000 , respectlvelyo 

- 18 -
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0 00 0000 00000000 

00 00 00 00 

01 01 01 01 

13 03 03 03 

25 16 06 06 

36 23 40 40 

40 40 41 41 

53 41 43 43 

76 56 46 46 

When 1t was found (by hand computatlon) that there 

ex1s ted a function (n=4) wh1ch defmed an onto mappmg, wh1ch 

was not hnear 1n any var1able and wh1ch was not obta1ned by 

compontlon of onto mapp1ngs of lower order, 1t appeared that 

1t m1ght be worthwh1le to determme all such functions. 

Th1s determ1nat1on was carr1ed through on SWAC. The 

non-restr1ct1ve assumpt1on was made that f(O, 0, 0, 0) = 0 • 

Then of all such functlons, those were reJected wh1ch d1d not 

produce an equal number of 0 8s and 1 's (e1ght of each). The 

rema1nder were then success1Ve1y subJected to tests as to 

-1 ) whether crd g 2 (B 2 = 8 for each 2-blocks B 
2 

, crd 

-1 ( ) -1 ) g 4 B4 = 8 for each 4-block B4 • crd g 8 (B8 = 8 for 

each 8-block B 8 • There were 291 such successful matr1culants. 

The follow1ng data concermng these was recorded on punch cards. 

- 19 -
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A tabulat1on of the funct1on f o 

-1 The e1ght 4-blocks constltutmg f (0) m terms 

of theu terminal 3-blockso 

3) The coeff1c1ents of the polynom1al defmmg f • 

The machme t1me 1n carry1ng through th1s program 

was 80 m1nutes o 

Of the 291 functlons def1n1ng onto maps. the 248 hnear 

1n the fust or last var1able were sorted out. leav1ng a res1due 

of 43o Of these 11 were known to be obta1nable by compoSltlons 

of lower order onto mapp1ngs. leav1ng a res1due of 32 o These 

3 Z functlons are tabula ted 1n the followmg two tables g 

- zo-
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Table I Functlons on 4-blocks wh1ch determ1ne onto mapp1ngs, wh1ch are not hnear 1n 
e1ther the f1rst or last var1ables and wh1ch are not obta1nable by compos1t1ons of lower 
order (n < 3) onto mapp1ngs 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 
0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 

0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 
0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0 0 
0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 
0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 ..... 
1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 1 N 

1 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 

1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 
1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 
1 1 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 
1 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 



£ Al Az 
1 1 
z 1 
3 1 
4 1 
5 1 
6 1 
7 
8 
9 

10 
11 1 
1Z 1 
13 1 
14 1 
15 1 
16 1 
17 1 
18 1 
19 1 1 
2.0 1 1 
2.1 1 1 
22. 1 
2.3 1 1 
2.4 1 
2.5 1 
2.6 1 
2.7 1 
2.8 1 
2.9 1 
30 1 
31 1 
32 1 
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Table II. Non-zero coeff1c1ents of the polynom1als def1mng the 
funct1ons 11Sted 1n Table I. 

A3 A4 BIZ B13 B14 :Bz3 Bz4 B34 c12.3 c12.4 

1 
1 

1 1 1 
1 1 

1 1 1 1 
1 1 1 
1 1 1 
1 1 1 1 
1 1 1 1 1 1 
1 1 1 
1 1 1 
1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 
1 1 1 
1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 1 
1 1 1 
1 1 1 1 1 
1 1 1 

1 1 1 
1 1 

1 1 1 1 
1 1 1 1 1 

1 1 1 1 
1 1 1 1 

1 1 
1 1 1 1 

- 22 -

c134 Cz.34 

1 
1 
1 1 
1 
1 1 
1 

1 1 

1 1 

1 
1 
1 1 
1 1 
1 1 
1 
1 e 1 1 
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It was po1nted out by R A Dean and R. C Lyndon 

that the set of 3Z polynom1als hsted 1n Table II, can be 

generated from a set of e1ght by apphcat1on of two s1mp1e 

processes One of these 1s the subst1tut1on (;x4) (x2x 3), 1 e., 

1nterchange of x1 and x 4 -and 1nterchange x 2 and x 3 

The other 1s comp1ementat1on, 1 e. , subst1tut1on of 1 + x for 
1 

X ,1=1,Z,3,4 
1 

7 

10 

Z4 

zz. 

9 

13. 

14 

Z3 

The follow1ng 1s a generat1ng set 

-Z3-
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WORKING PAPER Noo 22 

A NUMERICAL SIMULATION TO STUDY THE READINGS OF A 

FIXED ANTENNA ADCOCK RADIO DIRECTION FINDER 

UNDER CONDITIONS OF FADING 

Joseph F. Mount 
Co Tompkms 
25 Feb 1958 
10 pages 

In thts paper we shall descrtbe a numertcal stmulatton 

from wh1ch we try to draw some conclus1ons concern1ng the 

behav1vr of a perfectly balanced f1xed antenna Adcock d1rect1on 

fmde1 [1. 2. 3] under condtbons o£ fadmg. It 1s assumed that 

fadtng 1s caused by random cancellat1on of s1gnals arr1v1ng 

on d1fferent transmtss1on paths o Normally these paths m1ght 

dtffer e1ther tn the number of reflectlons from the tonosphere or 

1n the layer from wh1ch they are reflected, or botho M1nor 

var1at10ns 1n dtrecttons of the transmtss1on path from any 

JUmp pattern may occur at the recetvtng s1te because of 

var1ahcns 1n 10nospher1c hlt. vartatlons 1n penetration, local 

reflectlcns, and other causesc 

s - 110 022 
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will be centered about two sets of direction cosines, which 

may be specified independently of each other and of other 

simulations at the start of each calculation; an approximate 

intensity is specified precisely for each transmission, inde­

pendently of all other inputs. We allow for the following random 

variations in transmissions, each variation to occur slowly 

enough to justify treatment through use of variables which 

are piecewise constant: 

(a) The relative phase between the two arrivals 

varies randomly and uniformly between 

0 a_!ld 21f ; 

(b) The intensity of each arrival will vary from the 

approximate value set by a factor 1 + h, where 

(c) 

h is a sample from an approximately normal 

distribution with mean zero and standard deviation 

which is set as part of the input of the problem; 

The six direction cosines of the arriving signals 

will be modified to direction numbers by the 

addition of independent samples from normal 

distributions each with mean zero and with 

standard deviations which are set as part of,t':i~·~;;,'!>, 

the input to the calculation. 

- 2 -
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These eight standard deviations are set Independently of 

each other and 1ndependently of other parts of the calculations. 

At least for the tlme be1ng the calculation will consist 

of the determ1nat1on of two functions and the recording of 

relations between them. For each choice of the random variates 

the Slgnal strength received at one of the collectors wlll be 

computed and for each choice the reading of a f1xed antenna 

Adcock direction finder will be estimated. The signal strength 

will be calculated straightfo:rwardly. The read1ng of the 

rad1o d1rect1on finder will be est1mated e1ther by computing the 

pomts of maXImum deflection of a Watson Watt [2] type dtsplay 

under the stimulus of the two Slgnals, or by computing angles 

of m1n1mum deflection for a rotating gontometer [1] type 

display. In each case, It wJll be assumed that the equipment 

rece1v1ng the signals 1s 1n perfect adJustment, so that none 

of the cahbrattng complexities of [1] and [2] w11l be Introduced 

except to the extent that the angle of arr1valmfluences the 

octantal error. 

It 1s proposed that relattons between these two functions 

be exh1b1ted by means of talhes In one hundred poSltions, 

givtng a kmd of scatter dtagram. Thus, 1f the funct1ons are 

- 3 -
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denoted by f and F , we propose that the range of poss1ble 

values of each be d1v1ded 1nto ten parts, arb1trarlly as part 

of the 1nput routme, and that the number of examples found 

1n wh1ch the functions fall1nto each poss1ble patr of cells be 

recorded and presented as output. 

2. The funct1ons to be computed -- the two-channel case. 

For the two-channel case, we examtne equattons (8) 

of [1] (these equattons w1ll be repeated below), and try to 

compute the response of a two-channel dtrectlon f1nder 

under the 1nfluence of a pa1r of Slgnals of the type tndtcated 

above. 

Exphc1tly, we assume that s1gnals w1th frequency 

w/lto are betng rece1ved over two paths. The quant1t1es 

pertinent to the two s1gnals wlll be dtstmgutshed by subscrtpts, 

the subscr1pt 1 for the ftrst stgnal and the subscr1pt 2 for 

the second. The ftrst Slgnal w1ll arrtve w1th d1rect1on costnes 

a 1 , ~land '\'1 , the second w1ll have dtrectlon coSlnes 

a 2 , ~2 , and Y2 • The s1gnals wlll have amphtudes (wetghted 

by the effectiveness of the collectors) A1 and A
2 

respectively. 

The ftrst s1gnal w1ll be taken to set the standard 1n phase, 

so that the responses of the two antenna pa1rs to 1t w1ll be 

gtven by dtrect analogues of equat1ons (8) 1n [1] , 

- 4-
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(1) 

wa1d 
EEWl = 2A1 sm 2c sm wt • 

where, as before, d 1s the d1atance between collectors 

of the pan and c 1s the veloc1ty of rad1o wave propogat1on. 

For the second arr1val the phase 1s d1splaced a constant 

amount e2 sampled from a uniform dlstrlbutlon over the 

range (0, 21r] • (Here e 
2 

plays a role somewhat d1fferent 

from the role of e m (2].) The responses to the second 

s1gnal are respect1vely 

(2) 

The analys1s here follows that of [2] • 

The total NS s1gnal1s the algebra1c sum of the two 

- 5 -
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or 

(3) 

wf32d s2 s1n lc cos wt] 

S1m1larly, 

(4) 

The development of the functlons to be talhed follows 

the general development m [ 2] • 

A heterodynmg s1gnal EL cos (w + w
0

)t 1s m1xed 

w1th ENS and EEW • the d1fference frequency 1s extracted, 

and the s1gnals ampbf1ed to be presented respechvely as 

honzontal and verhcal deflectlons. Us1ng (3) and (4) and 

the re lat1ons 

(5) 
cos (w + w )t stn wt = iJSln (2w + w )t - sm w t] , 

0 0 0 

-!;[cos (2w + w )t + cos w t] 
- 0 0 

the retamed s1gnals are proporhonal to 

- 6-
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w ~ld w~zd 

2c + A 2 cos ~z s1n Zc 
) sm w

0
t 

-A2 sm~ 2 
w~2d cos w t s1n 

?c 0 

- (Al Sin 
wa1d 

+ A
2 

cos ~z 
waza 

) Sln W t = Zc s1n Zc 0 

- A 2 s1n ~z sm 
w~zd 

cos w t 
Zc 0 

The deflectiOn may now be calculated as a funct1on of t• 

z z z 
formally. r = Ev + EH 

The max1mU1n deflection (and the m1mmum) occurs when 

dr/dt = 0, hence when 

(7) 

where the dot denotes d1fferentlat1on w1th respect to tlme. 

S1nce we propose a computational, and not an analyhc-, 

attack on the problem, we propose to s1mpllfy the notatlon 

at th1s po1nto To that end wr1te the computable functions 

(8) 

W~ld W~zd 
V S = - (A1 sm~ + A 2 cos ~Z sm Zc ) • 

w~2d 
V C =- Az sm g2 s1n Zc 

- 7 -
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so that 

{ 
Ev = vs Sin w t + vc cos w t 

0 0 
(9) 

EH = Hs Sin w t + He cos w t 
0 0 

Then the cond1t1on (7) for max1mum or mm1mum 

deflechon glVes 

(10) tan 2 w t 
00 

In a complete cycle of 2 Tr radians, th1s equation (10) IS 

satisfied by four angles w t separated by tr/2 rad1anso 
00 

Values for Ev and EH at these pomts may be 

found by writing 

tan w t :::: 
00 

-1 + /.tan 2 2w t + 1 
00 

tan 2w
0

t
0 

us1ng a stmtlar formula to ftnd tan w
0

t
0

/2 (chooSing the 

ambiguous s1gn carefully each time) and wr1t1ng 

(11) 

Sin 

cos 

w t 
00 

2 tan w t /2 
0 0 = ------~------

1 + tan
2 

w
0

t
0
/2 

1 - tan
2 

w t /2 
0 0 

w t = I 2 
o o 1 + ta.11 w t I 2 

0 0 

Independently of the cho1ce of sign, the four d1s-

placements may be computed eastly. I£ the computed values 

of (11) are wntten 
- 8 -
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S
0 

= s 1n w t and C = cos w t 
0 0 0 0 0 

then at the four extreme deflect1ons the components are 

Ev 
1 

=so vs +co v c and EH 
1 

= SoHS + CoHC 

E 2 
v =co v s- sovc and E 2 

H = CoHS - SoHC 

(12) 3 E 3 
EV =--So V S - Co V C and = -SoHS- CoHC I H 

4 and E 4 -CoHS + SoHC EV =-CoVS+SoVC = c H 

E 3 
v 

4 1 2 
and Ev above are obtamab1e from Ev and Ev by 

mu1tlp1ylng by -1 , and a s1m1lar remark apphes to the 

hortzontal components. only the flrst and second of these 

deflections wlll be conSldered. Wr1te 

the fust or the second of the deflectlons wlll be retuned 

1 2 2 2 dependmg on whether (E ) or (E ) 1s largero We 

choose the f1rst funct1on to be talhed as 

0 

F 1 1s a measure of the rece1ved s1gnal strength. 

Fmally note that for the deflectlon ret.amed the d1s-

placement 1s at an angle 

- 9 -

cj> where 
0 



REF ID:A38876 
UNCLASSIFIED 

(13) tan <1> = 
E a 

H 

E a v 

for the chosen displacement Index a • This Is the tangent 

of the angle read on the direction fmding equipment 

For some a , (3 write tan cp
0 

= J1k Choose 

a , (3 to be horizontal d1rect1on cosmes accepted as correct--

say the mean from wh1ch a 1 and (31 dev1ate. Then the 

td.ngent of the "error" In reading {Including octantal error) IS 

(14) • 

Thts funct1on F 
2 

1s the second function to be tallied. 
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