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The period of x+ 1 i1n (2 + 1)/x+ 1 15 determned
for all prumes p < 288 for which p 1s a pramivive root. This

-1
18 found to be P <222— - ) for 41l such primes except 37, 101,
197, 269 for which 1t 18 1/3 of this valuge. The four special
cases give counter-examples for the conjecture that the perwod is
alwsys maxamal., Some arguments tending to show that the behavior is

consistent with 'random expectation! are given.
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WORKING PAPER NO. 11
THE BLANKINSHIP CONJECTURE EXAMINED

J. D. Swift
1 Avgust 1958
11 pages

1, Introduction. For praimes p having 2 as a primitive root,

the cyclotomic polynomial

(1) £(x) =~ -I-C-Pi-if;-

is airreducible over GOF(2). It is also evident that, with respect to
this polynomial, x has order p . The question of tne order of the
other linear polynomal in x, y=x+ 1, arises. By various
methods, one of which is included below, it 15 easy to see that the
order of y 1s pn where n is a divisor of s = M~ 1 vwhere
m=(p ~1)/2.

Dr. Wo A. Blankinship has conjectured that n = s always. This
conjecture was based on certain empirical evidence concerned with
p £ 100 . The chief purpose of this paper 15 to discuss a method by
which the proposition was investigated for p < 288 . In particuiay
the previous evidence was found to be faulty. The final resultis are
that n=s for p=3, 5, 11, 13, 19, 29, 53, 59, 61, 67, 83, 107,
131, 139, 1h9, 163, 173, 179, 181, 211, 227; and thalt n = 8/3 for

p = 37, 101, 197, 269.
§-110 011
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Certain tables wnich were of use in the invesiigation and, not
being readaly available elsewhere, may be of some general interest,
are included.

2. Theoretical considerationsg, Let the notation be as in the first

paragraph of the introduction. Further, let gly) = £(x) , 1.e.

(2) gly) - 21+ 1

Then define % = x + and let h(z) = x @ £(x) . The degree of the

Ml

polynomial h(z} is m . Now we maintain: The order of y wath

respeet to f£(x) 1s p tames the order of z wath respect to h(z).
2

Proof. y2=(1+x)2=14%x°=xs . The order of y° 15 the
same as the order of y since both are certairnly odd. The order of x
is p 3 the order of =z is prime to p . Hence the order of y is
the order of x +times the order of 3z by the standard theorem on the
orders of elements on a Galois Field. Fnally if h(z) divides z= -1
as a polynomial 1n =z , uv is clear that 2z = 1 in the GF(2F)
defined by f(x) .

Thus the basic problem 15 reduced to the evalnation of the order of z
with respect to h(z) or, in other terms, to finding the period
of h(z) .

Blankinship's conjecture 18 equivalent to the statement: h(z)

is pramitive irreducible. Now h(z) is certainly irreducible for

-l -
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all degrees under consideration, Indeed h(z) may be irreducible

when f(x) is reducible. This 1s the case, for example, when p = 7 .
The condition for reducibility of h(z) is that the corresponding

f(x) have a proper symmetric divisor. Thus in some vague sense h(z)
is 'more than irreducable! and this idea glves some credence to tne
conjecture. It has, however, been the generally observed <fact that
there 1s no simple characterization of pramitaive polynomials any more
than there 15 a simple numeraical function which always yields prames.
Indeed such functions have a statistical property known as Kronecker's
Hypothesis which sbtates that the observed frequeney of prames will be
asympbotically equal to that expected on elementary frequency considera-
trons.

Now how likely 18 a polynomial to be pramitive? The number of

primtive polynomals 158 @(s)/m while the number of irreducible

polynom.als is
m m

1 a3 Q49,4

SO
where the qQ, are the prime factors of m . The ratio of these
numbers for p = 3, 5, 11, 13, 19, 29, and 37 is respectively, 1, 1,
1, 67, oB6, 65, .5h. Cther figures are given in a table at the end

of the paper. Hence 1t 1s quibe reasonable that 37 should be the

first case of wmprimtivity. Again the number of polynomials belonging

-3 =
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t0 e , &n admissible divisor of s, is @(e)/m . Hence if e = 8/3
the number is exther 1/3 or 1/2 of the pramitive polynom.als while
1if e £8/7 the mmber is £ 1/6 of the total. Further 3 is a
factor of 11 of the 21 composite mumbers & considered while 7
(whose presumed asymptotic frequensy is also 1/2) is a factor of only 9
of them., ¥ave is never a factor.
Hence if h(z) 28 imprimitive 1t 1s most likely to have a period

8/3 . These remarks suffice to suggest that the observed results are
consistent with a 'pl;.rely random' or !'Kronecker'! behavior of h(z).
s/ 3« The computabion. To test promtivity 1t suffices to investigate

9

% where now the q, are the various prime factors of 8 . If one

of these 1s 1 mod h(z) then h(z) 15 impramitive. Further the
period will divade all the s/qi which yield 1 and will not divide
those which do nol gave 1 . This enables a brief salculation of the
period. The calculation thus requires a) The polynomwals h(z) For
the reaulred P 3 b) the prames d; 3 ¢) the numbers s/qi 3

d) zs mod h(z) . We now discuss the procedures used for these
steps,

a) Tet i‘r(x)=xr‘l+ xr"2+ seey x+ 1, for r an odd

-1

positive integer and hk(z) - x X fr(x) for 3z =x+ X and

k=(r~1)/2 . Thus £, and h are generalizations of f and n

-} -
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to all odd and all natural numbers respectivelys hm(z) = h(z) .
The important fornmla is:

(3) b (s) = 5 by _y(2) + By () .

This recursion was first observed in a somewhat differemt context by

Blankinship. Its proof i1s tmvial:

hk(z) = x (x4 N SN 1) by definitaon

=xFae 2y v p e xte s x¥
th-l(z) + hk"2 = (x + x.-l)x-k+] (x2k~2 + x2k-3 + oo0e & 1)

+ x-k+2(x2k-h + xak-; + oeoex 1)

I el ¢ Pl B 6 e Sy
+ x-kl-l + x—k + (xk-2 & oeo & x-k+2)

= hk(z) o

This formula gives a method of computing h(z) which 15 vastly
simpler than that given by Alvert in SCAMP Working Paper 27 of
15 February 1956. Specifically all that is neeaed is to shift
by 1(2) left by one and add hy_,(z) . Only the output time limlis
the speed. The hk(z) s k < 1)y were computed in less than two

-5 -
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mnutes on SWAC and the specific values required selected from the
resulting deck,

b) The factorazation of numbers 2° -1 is found in several
tables in Kraitchiks Introduction a la Thdorie des Nombres, Paris, 1952.

Since our primes p are congruent to L 3 mod 8 (as 2 cannot be a
quadratic residue of p) , l—g—-l- 1.8 elther odd or singly even. Hence
the tables on pp. 12 and 38 sufficed. The factorazations are collected
in a table appended to this paper. The prime factors were first placed
on punched cards and comverted to li-precision binary by a routine
wraitten for this purpose,

¢) A division roubtine an lLi-precision exact terms was wribtten.
This took in a number 8 , divided it by a sequence of exact daivisors
and punched out the quotients. Then 1t accspted the next 5 . If a
non-divisor was entered the machine halted .n break-point; this feature
guarded against typographical errors in Kraitchik or ms-punching in
routine b).

d) This 1s the praincipal routine and was divided into two parts.
In the first, the input was h(z) . The voutine found, by successive

oK

squaring, 2z ,k=0,1, *** , m , reducing the powers mod h{z) .
n

As a check z2 = 72 . The powers were stored, as produced, on succes-

sive drum channels. The second poriion sccephéd syccessively the

numbers s/ql and compubed 2z +to these powers by muwltaiplying

-6 -
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consecutively the previously computed powers which appear in the binary

expansion of s/q,i o As a check on this routine s itself was emvered
and 2% =1 compubed after the maximal proper divisors had besn com-
pleted.

The routines listed in a), b), and ¢) were primarily input-outpui
routines in the sense that the only time limitations were the cyclie
rates of these devices. The routines in d) were of rather short
duration., The longest were for p =181 at 6 % mn. with 11 davisors
and check and for p = 211 with 10 dlvisors and check, a total of
6 min. The total run takes just over an hour for all primes less than
288,

However the roubine is rather hard on ihe machine. This seems wo
be due to 1ts large number of doubling commands and repeated extracts
which cause spill and the periodic drum references following violent
spells of computing which produce surging. It has been necessary to
choose days of speclally good machine behavior to get the routine through.
Three such runs have been madej on these runs the single case of incon-
sistency or failure to cheek occurred on &/3 for p = 269 which failed
to give 1 on the second rmm. This particular exponent has been mm
16 times.,

As a result of these runs we can states h(z) is ampromtive for

37, 101, 197, 269. It 1s highly probable that the period of h(z) for

- T -
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these primes 18 s/3 . It is highly probable that h(z) is promiave
for all other prames p < 288 for whmeh 2 is a primitive root. The
difference i1n degrees of assertion is due to the question puts Is
this polynomial 1 ? If the probability that the machine has run withoub
error is pP(m) , ‘the probability that we should get the answer 1 by
mistake is (1 = P)2™" while the probability that we should get a
value not 1 when the correct answer 2s 1 is (1 - P)(1 - 2™) | fThe
second 15 much greater than the first. For the three runs; the numbers
- P)3 p=3m are so small they can be neglected entirely. The num~
bers (1 = p)> (1 - 23 , while small should not be totally forgotten.
It myst be clearly understood that in all rums mentioned the checks
never failed; hence P is reasonably large.

All routines are on file at NAR-UCLA.
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Table 1

Pt

Factors of 8= 2 © =1 for primes p havang
2 as & primitave root

Factoraization of =8

1 1

t 3

t 31

:32’7

773

3 ¢ )3 « 127

232 .7-19.713

$ 32731 8191

t 233 ¢ 1103 - 2 089

61:3%2 .7 .11 .31 » 151 - 331

6727 + 23 -89 » 59 L79
s

S Y8bEEEww ©®
on

83 + 13 367 - 164 511 353

101 ¢ 3 ¢« 11 « 31 « 251 « 60L » 1 801 - )y 051

107 ¢+ 6 361 « 69 L31 « 20 39} LO1

131 31 - 8 191 - 1)5 295 143 558 1il

139 ¢ 7 + L7 - 178 481 + 10 052 678 938 039

149 2 3 - 223 1 777 « 25 781 033 - 616 318 177

163 ¢ 7 - 73 - 2593 « 71 119 - 262 657 - 97 685 839

173 ¢ 3 « 31 » 9 719 - 2 099 863 - 2 932 031 007 403

179 = 618 970 019 6L2 690 137 L)9 562 111

181 13> « 7411 .19 - 31 - 73 - 151 « 331 - 631 - 23 311 - 18 837 0OL
197 2+ 3 - 43 - 127 - L 363 953 127 297 - L 132 676 798 593

211 ¢ 7 « 31 » 7L « 127 » 151 & 337 29 191 « 106 681 - 122 921 » 152 Ol1
227 1 3 391 - 23 279 - 65 993 - 1 868 569 - 1 066 818 132 868 207

269 3 3 « 7 327 657 193 707 721 - 761 838 257 287 - 6 713 103 182 899

-9 -
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Table 2

Polynomials h(z) for primes of which 2 is a pramtive root
(Notation an octel as an Marsh's Tables of irreducible polynomials)

3
5 7
11 67
13 163
19 1563
29 71403
37 16 33407
53 7156 00067
*59 67016 00007
61 1 63006 00003

67 15 63006 00003
83 671l 00346 01563
101 71 5603); 00000 33407
107 670 1633l 00000 03467
131 67 14030 0001); 00000 00003
139 1560 341670 0033l 00000 00067
149 71560 00670 1633L 00000 03467
163 156 30060 00003 4601}, 00006 T1}03
173 7140 33460 00000 0671} 00346 01563
179 67140 03460 00000 0071k 03346 00163

181 1 63310 01560 00000 0033l 07156 00067
197 715 60340 00160 00000 00000 67016 00007
211 1 56300 07140 33460 00000 00000 00346 01563

opT 671 L0300 00016 30060 00000 00000 00000 71403
269 71103 34600 16300 00000 03460 00000 00000 00000 00163

¥ncorrect in SCAMP paper 26, 15 Feb, 1956, 271 omitted there.

- 10 =



REF ID:A38876

Table 3
Frequencies of various classes of polynomials

Irreducible Primitive

5 2 1 1|1 1
1 6 J15 1

13 6 9 6 56 67 67
19 9 56 L8 il .86

29 | 14 1 161 756 283 65 .93
37 | 18 1), 532 7 776 222 o5h .38
53 | 26 2 580 795 1 719 900 o15k 67 <999
59 | 29 18 512 790 18 407 808 +138 «9%h

61 | 30 35 790 267 17 820 000 133 50 o33
67 | 33 260 300 986 211 016 608 o121 <81

83 | W1 |53 647111850 | 53 630 700 752 098 49996
I TR D R IR S

The third colum lists the number of irreducible polynomials of degree m .
The fourth columm lists the number of primitive polynomials of degree m .
The fifth eolum gives the probability that a random polynomial of
degree m lacking a linear factor is irreducible.
The sixth column gives the probsbility that a random irreducible poly-
nomial of degree m is primitive,
The seventh colum gives (where appliscable) the probability that an
imprimitive irreducible polynomizl has period 1/3 the maximum.

c=-ll—
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WORKING PAPER NO. 15
THE RAND CORPORATION'S RANDOM DIGIT GENERATOR

H. P. Edmndson
18 August 1958
30 pages

The theoretical and deslgn considerations of a machine to selest
decimal diglts at random and punch them into I.B.M. bookkeeping cards
are discussed in this veport. The heart of the machine is an electronic
binary counter which counts pulses from a random pulse source. Period-
ically, the counter is stopped for observation. About 100,000 counts
are expected between successive observations, so that the last digit of
the total ean be considered random.

Malytical studies indicate that the machine is highly random in
its selection except for trivial correlation between sucecessful
selections. Experimental tests of large numbers of the digits farst
tabulated by the machine indicated no irregmlarities except a slight
excess of odd over even digits., Subsequent evolution in the pulse
forming and counting circuits appears to have entirely eliminated the
possibllity of this kind of bias,

S-110 015
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WORKING PAPER NO. 15
THE RAND CORPORATION'S RANDOM DIGIT GENERATOR

H. P, Edmmdson
18 August 1958
30 pages

Introduction. Limited tables of random numbers have been published,

but mach larger tables -- in fact an inexhaustible supply of randem
numbers -~ are needed to avoid using the same tables over and over again,
Repetitious use of a table of random numbers is particularly undesirable
within a single problem.

The generation of random digit tables by human or machine methods

is not as simple as it appears. The remarks of Kendall and Sm:x.i'.h]"2

concerning this difficulty are pertinent:

"It is becoming increasingly evident that sampling left
to the discretion of a human individual is not random,
although he may be completely unconscious of the existence
of blas, or indeed actively endeavoring to avoid it.
House~to-~house sampling, the sampling of crop yields, even
ticket drawing have been found to give results widely
divergent from expectation .s.ce.e

"It has long been held that mechanical methods of producing
random series of integers do not give satisfactory results.
Dice~throwing, for example, to give a random series of the
integers 1 to 6, notoriousiy results in bias., Nor are

l!{. G. Kendall and B. Babington Smith, "Randormesz and Random
Sampling Numbers," Journal of the Royal Statistical Society, pp. 151
and 156, Vol. CI, 1938,

Kendall and Smith, Loc. Cit., pp 15L-156.
S-110 015
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roulette tables much better. Karl Pearson has shown by
analysis of the gaming results at Monte Carlo that the
odds against the absence of blas are exceedingly large.
The source of this bias is not altogether clear, but if
we exclude the possibilities of deliberate falsifica-
tion, it would appear to arise from small imperfections
in the roulette wheel which direct the ball into some
compartments in preference to others seece..

Mr. Cecll Hastings of the RAND Corporation has proposed a scheme
for accomplishing the selection of digits with a high degree of random-
ness, and automatically recording them at a reasonably high rate of
speed. A machine based on a variation of his idea has been designed and
constructed in the Development Section and put into successful operation,
The following discussion describes the operation of the machine,
attempts to discuss its randomness analytically, and mentions a few of
the design features intended to insure conformity to the theoretacal
analysis.

Theoretical considerations. The two design criteria of a machine

intended to produce a table of random digrts are:
1) The device should be absolutely impartzal.
2) ‘There should be no correlation between successive selectionsg
the machine should have no memory.
Almost any common device one might name £alls down at one of these
two criteria. A mechanical roulette wheel, for example, satisfies
neither requarement. It is difficult to build a roulette wheel with such

precigion that one number would not be favored over anpther by even one

-2 e
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percent, let alone, say, one thousandth of a percent, which would be a
more nearly acceptable figure., Furthermore, if, sgy, one mllion succes-
sive 6'!'s were thrown on a roulette wheel, a groove would be worn to the
6 compartment. Therefore, the 6 would be favored over the other
numbers,

Consider, however, the following system, Figure 1, which 1s a
modified electronic roulette wheel,

Random Frequency

Pulse Source L Input Pt. . Pulse Shaping .
Output >
GATE Termainal - Cirecurts
Constant Frequency J+'Contml Pt.
Gating Pulse
Source
(A
Binary-Decimal Vi
I.B.M. 2
|—<«— Transformation q
Key Punch Rel lo
elays

Figure 1 - Random Digit Selec'ﬁir_lg Systen
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It is intended that sharp pulses from the random frequency pulse
source should arrive at the gate at an expected frequency of about one
hundred thousand per second. This gate circuit is controlled by broad
constant frequency pulses from the constant frequenecy gating pulse
source, so that the gate allows the random pulses to pass in groups of
about one second time duration. FPEach random pulse advances the position
of the counter one digit, so that each group of random pulses advances
the count about one hundred thousand digits. After each group of
pulses, the digat at which the counter rests is considered to be random.
Thas system is closely analogous to a 32 compartment roulette wheel,
around which the ball spins about three thousand times before stopping.

The choice of 32 numbers results, of course, from the fact that

25 = 32 1is the mumber of steps in one c¢ycle of a five place binary
counter. For a reason to be discussed later, the following transforma-
tion from binary numbers to decimzl digits is now used (this trans-

formation was not used originally).
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TABLE T
TRANSFORMATION FROM BINARY TO DECIMAL DIGITS

Position in Cycle Binary Number Decimal Digit

00000
60001
0001.0
00011
00100
00101
00110
00111
01000
0Lo0L
01010 discard
01011 discard
01.100 discard
01101 discard
01110 discard
01111 dascard
10000 discard
10001 dascard
10010 discard
10011 discard
101.00 discard
10101 discard
10110
10111
11000
11001
11010
11011
11100
11101
11110
11131

0 O~ MWW HO

HEE RN R RN EE R RRELEREBvmwonrworo

QO H oW EULON=] 000

The impartiality of this type machine results from the assumption
that the pulse shaping circult standarcizes the shape of all pulses

-5 -
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it passes on to the counter, and that the level and separation of the
standardized pulses driving the counter is sufficient to unerringly
advance the counter one count per pulse. Even though the counter flip-
flops themselves may prefer certazin positions to others, the totals
observed on the counter are determined entirely by the number of pulses
which come from the pulse forming circults during the measured time
intervals. It was, however, the failure of the initial circuits to
falthfully perform these functions that caused the imitial odd-even bias
in the tables created. Impartiality also depends upon complete independ-
ence of the gating pulse generator, and the random pulse generator from
the positlion of the counter. This is accomplished easily by carefully
isolating the flelds and power supplies of these different components.
There 1s no evidence at present to indicate that the machine does
not select binary nunbers with complete impartiality. However, it would
be necessary to sample several million numbers to detect an oddeeven bias
of as much as one tenth percent. As insurance against the possibility
that the machine may have an undetected bias in one of its binary
counters, the peculiar transformation to decimal digits given an Table I
i5 vsed., Note that the two binary numbers which transform to each decimal
digit are complementary., Thus, if the flip-flop controlling any one binary
place is biased by a certain amount, the probabllity of amy particular
decimal digit being selected is unchanged. The excess (or shortage) in

b -
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the probability of the diglt being selected in the first ten poaition§
is exactly compensated by the shortage (or excess) in the probability of
that diglt being selected in the last ten positions.

The effect of this complimentary combination scheme can be formulated
analytically., Suppose that O 1is preferred over 1 in the last binary
place by an amount 2o , in the next place by 2@, in the next place by

23 , in the next place by 2€& , and in the farst place by 2 p . The
probability of a O decimal digit equals the probabilaty of a 00000
binary number plus the probability of a 11111 binary number.

p(0) = (1/2+ a)(1/2+ B)(1/2+ B)(1/2+ €)(1/2 + p)
+ (1/2 - 2)(1/2 - BY(A/2 - 8)(1/2 - €£)(1/2 - P) (1)

Neglecting terms higher than the second degree leaves

p(0) = 1/16 + 1/86P+aS +ae +ap + p5 + 35 + 3e + Bp +S€ +88 +8p + £p)
(2)

Simila¥ly

p(l) = 1/16 + 1/8(-0\]3-018 ~dE ~ap + 36 + Be +Bp + 8p + &p) (3)
p(2) = 1/16 + 1/8(-98+28 +2€ +3p -8 - BE-Bp+85e +8p =¢9 (L)

eto.
Notice that no first degree errors remain as a result of this
partacular type of transformation.

-7-
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The second criterion, the absence of correlation betwesn successive
selections, is certainly satlsfied by this system. Actually, it would
be nearly impossible to intentionally control the frequency of the pulse
source and the period of the gate switching pulse closely enough that a
next® selection could be predicted, since the expected number of counts
per gate interval is 100,000, The following analysis indicates how
small this correlation actually is assuming an ideal counter, random
pulse source, and gating system.

The probability of exactly X random pulses occurring in any

constant time interval group is

p(K) = —% ¥, (5)

where N is the expected number of pulses per group.
If, therefore, the count starts from a digit d 0 ? the probability
of its advancing just k diglits to digit 4 is

p(k) = %k-;- e (6)

The digit dk Would also be selected 1f the counter advanced
32 + k¥ counts, and the probability of this happening is

32
p(k + 32) = -(E'N?m e-N . (7)



REF ID:A38876
UNCLASSIFIED

Similarly, the dk digit can be selected by the count advancing k
plus any multaiple of 32 counts. Thus, the entire probability of the
digit dk being selected after do is

+32 + 6]
P =X oMo s T g e @)

Simplification of this to a finite series can be achieved by the
use of the identity

te
ik%é“- Ne

Nk Nk+32 Nk+6h 1 31
ﬁ*mﬁ*m*""?ﬁnﬁ © ° - &
Thus,
$
1 N 31 -ikLE  Ne
p(dk) =35 € Y e e (10)
m=o

This equation reduces easily to the fom

31 Ncos:’:ng-r- 1(N sin _I%f_k%‘l)
e

p(a) =gz T e

m=0

. (1)

S?.nce N is gbout 100,000 , the term in the summation corresponding
to m=0 1is by far the most important. Next are the two ‘terms corres-
ponding to m=1 and m = 31 , and the remaining terms are negligible
in comparison with these. The three retained terms can be written
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Neos®h 1(Nsin L -k
P(dk)'-‘f%ie—n l:eN-becos‘rse( ~hIE TE)

Ncpsg%g- i(Nsin%%ﬂ— -k%g-)] -

+ @ e

But cos%scos%f-,sin{%u-sing%gr—; and for k an integer,
T

k {% radians 18 coincldent with -k 2%5— radians., Thus

p() =gsl1+e

-N(1-cosf‘5){ iein -l a@enf-rP} :I
e + €

-N(1~ cosf'g)

‘%E 1+2e cos(Ns:Ln]%-k{%)] . (13)

Since the cosine function can be no greater in absolute magnitude than
tnity, then this probability can differ from the perfect value of 1/32
by no more than

-N{1~cos {6)

e - plap) ¢ & o : (1)
For N = 100,000 this deviation is

'1/32 - p(dk)l é % e-100,000(1-.9807)

%6' e-1930 . (15)

-10 -
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Indeed, the correlation between successive selections 1s negligible.

The random pulse Source. The circuitry used as a random pulse

source 1s a high gain wide band noise amplifler followed by a detector
biased so that only the noise peaks above a certain high level are trans-
mtted through the detector into the output circuit. Figure 2 is a
schematic of the ¢ircuits used. The source of random noise is simply
shot effect in the first vacuum tube. The r-m-s value of this noise is
controlled by the blas applied at the input grid. The overall bandwidth
of the amplafier as about 6 megacycles.

The justafication for using a highly blased random noise detector
as a random pulse source may not meet the approval of the critical
reader. However, 2ll that is needed from a practical standpoint as a
highly irregular and unpredictable source of pulses to drive the counter,
and the biased random noise detector certainly satisfies this requirement.

As a matter of fact, 1t can be argued that the pulses generated by
such a device are nearly truly random. The requirement of a truly
random source would be that the probability of a pulse occurring between
t and t + dt should be some p dt , where p is the expected
number of pulses per second and 1s a constant entirely independent of
the nunmber and distraibution of pulses generated up to tame % .

Figure 3 1is a typical random noise voltage signal, with one

detected pulse shown to aid in discussing the problem.
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Figure 3. A Typical Random Noise Voltage Signal

Consider the following argument from the standpoint of an observer
who stands at the output of the biased detector and observes only the
detected pulses. 8Say, for example, that starting at the left end of the
signal of Figure 3, a pulse has not been detected for a long time. Then
proceeding with time to the right, the probability of a detertable pulse
occurring between any t and t+ dt is p dt , where p 1s a constant
determined by the r-m=-s level of the noise voltage and the bias applied
to the detector. So far as the waiting observer is concerned, a

detectable pulse is Just as likely to occur at one time as another.

-13 -
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Suppose that at time 'bo a pulse is finally observed. Then, however,
the observer is able to predict a trend for a short interval shead. Know-
ing the intrainsic decay behavior of the amplifier in question, he knows
that this decay voltage superimposed on the new random signal voltage
ancreases (or decreases as the case may be) the probability of a détect-
agble peak being observed. After A+t , however, the decay trend will
have expended itself, and the probability of a pulse will remain constant
(so far as the observer knows) until another pulse 18 observed.

The length of At can be assumed to be less than one microsecond
for the amplifier in questaion, since one-twelfth microsecond is the
conventional rule-of-thumb decay time estimate for a low-pass amplifier
of six megacycles bandwidth. The fact that the amplifier is actually
band-pass instead of low-pass can be neglected, since the ratio of noise
power in the missing low end of the f}'equency range to the power in the
band pass region 1s quite small, It will become apparent later that this
dlvergence from pure ;'andom occurrence in an interval of one microsecond
following each observed pulse is of no extra concern, The pulse forming
circuits reject any pulse which falls within one microsecond of a pre-=
viously observed pulse anyhow.

The gate circuit and the gating pulse genera'bor. The function of

the gate circuit and 1ts controlling gating pulse ger’xerator is to

measure out intervals of one second during which pulses from the random

pulse generator are amplified and passed on to the pulse shaping carcuits.
-l -
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Between each of these intervals should be a period of about one-tenth
second during which the pulses from the random pulse generator are
blocked, and the digit at which the counter stops is read and recorded
in an I.B.M. card., This timng sequence is obtained easily by means of
an unsymmetrical multivibrator.

Fagure l; s a schematic of this timing multivibrator and the grie
circuit. The gate circuit 1s 3 two stage pulse amplifier wath the plate
of the second amplifier tube tied in common with the plate of the gating
pulse isolation tube. Notice that when the multivibrator lies with its
right-hand tube conducting that the isolation tube 1s cut off. Thus,
the pulse amplifier works as a simple amplifier wath no interference from
the mltivibrator isolation tube. When the raght-hand tube is cut off,
however, this isolation tube grid goes positive wath respect to its =90
volt cathode, pulling its plate down to a negative value. Consequently,
the voltage 1s removed from the plate of the second pulse amplifier
tube, and no pulses from the random pulse source can pass to trip the
pulse foming eircults which follow.

A second multavibrator isolation tube is shown in Figure L. When
the grid of this tube goes positive, its plate current actuates the
counter reading relays and, subsequently, the I.B.M. key punch.

'J;ne pulse shaping circuits. The pulse shaping circuits have a

dgifficult job to perform. The input pulses are of various sizes and
shapes and occur at random in time. From these highly irregular input
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signals, the pulse shaping'circuits must form output pulses of standard
size and shape, no two of which can be within one miecrosecond of each
other, Any input pulse which comes within one mig¢rosecond of a previous
pulse must be rejected.

Although this would ordinarily be an easy function, it is made very
diffacult by the rigid requirements placed upon the dependability of the
circurts. The pulse shaping circults must be perfect, lest counter
partiality bras the digit selecting system. If any pulse leaks through
the pulse shaping circuits which is of such a s1ze and shape, or is so
close (less than one microsecond for the counter used) to another pulse,
that the counter might or might not (according to its own preference)
advance one count, then the unavoidable partiality of the counter itself
is allowed to contribute partiality to the system as a whole. The
circuits of Figure 5 were arrived at experimentelly, and appear to be
absolutely dependable.

-1f -
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First in the circult are two cascaded one-shot multivibrator
circuits (6SN7!'s), with a pulse width of about one microsecond. These
circuits do the major portion of the work. Pulses which are too weak to
trip the circuits do net get through to the output at all, and nearly
every pulse strong enough to traip the circuit produces a standard one
merosecond pulse., Some complications, however, occur. For example, when
twe strong pulses occur Just about one microsecond apart, the second
pulse may catch the one-shot multivibrator eircuit just as it 1s resetting
and produce something dlifferent from the standard pulse shape.

The final insurance against irregularities 1s a relatively fast flip-
flop circuit of 6AK5's driven at the cathode of one of the 6AK5's by
a 6L6 cathode follower. This circuit trips to the right if the draven
cathode is made more positive than +10 volts, and resets to the left if
the driven cathode is made more negative than =10 volts. Thus, the
circult can trip only once for each full pulse from the one-shot multi-
vibrators, and any small input irregularities wall fail to trip the 6AKS
flip-flop uwnless they go from ~10 to +10 volts. There is little
chance of trouble with input pulses too closely spaced in this cireuit,
because the flip=-flop is very fast compared to the circuits which drive
1t, The flip-flop has a rise time at its plates of about one tenth micro-
second, and stalnlizes in an exchanged positlon at the end of about two

tenths of a microsecond.

- 18 =
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Thus, the output of this circult is a square wave of about one
microsecond duration and very steep sides. If this output is differen-
tiated (not shown in Faigure 5 ee Fagure 6) the result will be
sharp positive and negative pulses, and, obviously, no two positive pulses
can be closer together than one microsegond. Alsd, these pulses will be
of standard~sike azhd-shape, =ints. the relatively aluggish driving circuits
shead of the 6AK5 flip-flop cannot effect its rise time appreciably.,

The counter circuit. The function of the counter circult is to

accurately count the pulses as they come from the pulse shaping circults.
The resolving time of the counter must be short compared to the one
microsecond minimum spacing between successive input pulses, and the
circults must be absolutely dependable else counter partiality might
contrihute partiality to the system.

The eounting 1s done in the binary number system because it i1s the
natural system for electronic counters. All the binary places except
the last five are disregarded, giving a count cycle of 25 = 32 steps,
the 33rd step being identical with the 1lst, the 3Lth step being
identical with the 2nd, etc., etc.

In Figure 6, the first two tubes are a cathode follower to isolate
the flip~flop of Figure 5, and a dmver tube for the following flip~-flop.
Recall that the output of the flip=flop in Figure 5 is a square wave

pulse with very steep sides.

-1l9 -
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In the output of the cathode follower circult this voltage is differen-
tiated by the 50 Pp condenser into the 10,000 ohm resistor; so that
the input to the 6AK6 driver tube 1s a sharp positive pulse correspond-
ang to the front edge of the inpub pulse, and a sharp negatiwe pulse
correspondaing to the trailing edge of the input pulse, Of 'course s the
positive pulse only 1s effective, since the tube is normally blased
beyond cutoff., When this sharp positive pulse 1s applied to the driver
tube grid, its plate conducts momentarily.

The basis of the electronic counter is a d-¢ flip~fiop, a olrcuit
having two stable positions. Note in Figure 6 that if no external
drving pulses are supplied, the 6AKS flip-flop would sit with either
its right hand tube condacting and the left hand tube cut off, or with
its left hand tube conducting and the raght hand tube cut off. Note also
that if the grid of the 6AK6 driving tube (which is normally cut off)
1s pulsed with a sharp positive peak causing its plate to conduct
momentarily that both plates of the 6AKS flip-flop will be momentarily
brought to almost zero voltage, and the flip~flop circuit will then
return to the state opposite the one 1t was resting in when the drmving
pulse occurred. This exchange of position is caused by the two ™memory"
condensers shown (20 ;1;1). The condenser to the formerly non-conducting
plate has a greater voltage across it than the condenser to the conduct-
ing plate. Thus, 1f both plates are momentarily reduced to nearly zero

volts, the condenser having the greater voltage across 1t causes the

-2 -
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grid of the opposite tube to be the more negative. When released, then,
the opposite tube becomes non-conducting, while the formerly non-
conducting tube conducts. Each positive pulse from the pulse shaping
circuits reverses the position of the first flip-flop.

The output of this flip=flop, then, 1s alternate positive and
negative steps. This output is isolated by a cathode follower and
differentiated by cireurts simlar to the differentiating circuit used
ghead of the first flap-flop. The result, of course, 1s again very
sharp positive and negative pulses, and the positive pulses are used to
drive the second flip~flop. This chain =~ flip-flop, cathode follower
stage and driving tube -~ is repeated a total of five times. The farst
flip~flop reverses conduction tubes for each input pulse., The second
Pap~flop in the chain reverses for each positive pulse from the differ-
entiating circuit following the first flip-flop =~ and this occurs only
on every second input pulse. Similarly, the third flip-flop reverses
on every fourth input pulse, etc., etc., and the last flip-flop reverses
on every sixteenth pulse., Thus, the counter cycle consists of the

following 32 steps:

- 20
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TABLE II ~ COUNTER CYGLE

No. 1

No. 2

No. 3

Noa, h

Flip-¥lop Position (O for right and 1 for left)

No. &

ww———-ﬁ

Step

1d
13

15
17
18
19
o2
25
26
27
29
30
31
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The binary to decimal transformation. Table I of the section on

theoretical considerations shows the manner in which the positions of
the binary cycle are to be interpreted as decimal digits. It is
desirable to indicate each of the digits by a closed cirecuit rather than
by a light, voltage, or current, so tha} any type of automatic device
such as an electric typewriter or I.B.M. duplicating punch may be used
to record the selections. TFigure 7 shows how this may be accomplished
by the use of multi-pole double~-throw relays.

Note that, depending upon what combination in which the relays are
open or closed, any one =- but only one -- path is closed to the common
input point. If these relays are controlled by the position of the d=c
flip=-flops of the binary counter chain, then 1t is possible to determine
by inspection the particular combaination which closes the circuilt to each
particular output point. In Figure 7 each of the 32 output points is
lasbeled with this binary counter combination (assuming 1 <to mean upper
contacts and O +to mean lower contacts), and the decimal digit this
combination should represent is copied from Talble I. Then the two out-
put points that indicate each of the decimal digits are tled to a
common output terminal.

Figure 7 shows how the relays are draven by thyratrons, the grds
of which are controlled by the cathode follower voltage of each of the
five flip-flops. The gating pulse output tube in the lower right hand

-2 -
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cormer of Figure | closes the master relay - power relay in Figure 7,
farnishing plate voltage to the five transformation relays. Thus, the
transformation relays do not attempt to follow the progress of the
electronic counter, but merely are controlled by the counter during the
one-tenth second interval durang which the gate is shut and no pulses
are drivaing the counter.

The relay-power relays work in conjunction with the master
transformation circuit relay to prevent the application of power to the
recording circuit until all five transformation relgys have been given
ample time to set in the selected combination, and to open the recording
circuit before the tramsformation relsys are released. Qtherwise, each
time the gating pulse occurs, the transformation rglays would give
momentary false oircuits when they were pulling in or releasing.
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Test and menitoring circu:u,bs. Unfortunately, it is impossible to
devise any kind of monltoring oircuit which will indlcate whether or not
the machine 1s choosing mumbers without bias. There are, howyever, a few
simple circuits which check the performance of the camponents of the
system.

Referring to Figure li, note the "Test Sequence Switch" in the grid
circuit of the 6AC7 gated pulse amplifier. When this switch is closed,
normal blas 1s applied to the grid of the 6AC7, and the circuit func-
tions as a pulse amplifier. If the switch is open, however, a blas of
~105 volts is applied to the 6AC7 grid, and the tube is completely cut
off. Thus, no pulses from the random pulse generator can drive the
counter. However, every taime the gating pulse clamps this 6ACT circuit,
one pulse is formed by the pulse shaping circuits of Figure 5 (the lead~
ing edge of the gatang pulse being sharP enough to trip the pulse
shaping multivibrators). With this happening, the counter should advance
just one count per selection. This test sequence is waluable as a
check on the reliability of the system from the gate circuit through
to the output device (which 1s an I.B.M. key punch at the present time).
Before and after each running peripod the machine 1s set on "test
sequence® for several minutes, and the punched cards produced are
checked for errors.

A second circuit monitors the average' rate at which pulses are
being counted. Thlis carcuit is a simple electronic frequency meter

- 28 =
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connected to the last flip-flop i1 the counter chain. A voltage 1s
generated proportional to the average frequeney of the counts and is
indicated by a meter on the front panel of the instrument (see Figure 8).
Also, this voltage is used as an a-v-c source to regulate the average
random pulse rate to the frequency desired (about 100,000 per second)
by using it as a "Control Blas" on the noise source tube in Fig. 2,

Electro-mechanical counters were installed in the output circuits
to Indicate total counts. Ten counters were comnected directly across
the output termmnals of the transformation relays to indicate the total
number of times each decimal digit is selected. Also, two counters were
installed to count the number of times the first flip~flop of the
electrontic binary counter indicated right and left (0 or 1) =- a measure
of the impartiality of the system up to the binary selections. Recall
that the binary-to-decimal digart transformation used, Table 'T, ylelds
decimal digits of improved impartiality. Thus, 1t is advisable to look
for partiality in the binary selections since partiality would be more
evident there.

Conclusions.

l. A machine which takes as random the last diglt of the total
random pulses in a fixed period has been constructed and put into

successful operation, Initially, an improbable excess of even over odd

-29 =



REF ID:A38876

UNCLASSTFIED

selections occurred. Bub, since revisions were made in the original
circuits, no indication of partislity has occurred.

2. A complimentary type of transformation from binary to decaimal
digits is used. If partiality should exist in the binary numbers
selected, this particular type of transformation would yield decimal
digits with considerably less partiality.

3+ The machine is completely automatic. The unit burlt was
comnected to an I.B.M. key punch to compile a table of several million

random diglts.
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WORKING PAPER No, 20
A CLASS OF MAPPINGS AND SOME EXAMPLES

G. A. Hedlund
28 August 1958

This note concerns a class of mappings defined and
studied by Rothaus (SCAMP Working Paper No, 25, August 30, 1957}
and Blackwell (Ibid and SCAMP Working Paper No, 3, July 9, 1957).
The first part of the paper develops some of the general theory.
Most of the theorems proved are not new, though it appears that
the proofs are, The second part of the paper gives some examples
which seem to have been unknown previously,

Let Sn denote the set of all sequences of 0's and 1'% of

length n, n a positive integer. Any member of Sn will be called
an n-block.

Let S denote the set of all unending sequences of
0's and l's . Any member of S 1s a function with domain
the set 1 of all integers (positive, negative or zero) and range
in S1 . Let

s = oo S_ 185 8]

and

t = e ceoe t-ltotl ceoe

be members of S. We define a distance in S as follows®

d(s,s) = 0 ,
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If t+s , there exists a least non-negative integer k such

that s, £ t, or s_k# t . o and we define

1
d(S,t) = m— .

It 1s easily verified that S , with this metric, 1s a Cantor

discontinuum.
Let f be a function with domain S~ and range in

51 s lee., f'Sn-->S1 . Then f defines a mapping Bm of

Sm+n-1 into Sm,as follows; lLet B e Sm_'_n_1 and let
B = S18, veee Sinl .
Define
t, = f(sl, S 41 ceeo S1+n-1) » 2=, 2, c00, m,
and let C

= 1:1 tZ... tm . Then &m (B) =C.
Simsilarly, f defines a mapping g of S into S, as follows

Let s€¢ S andlet s = ... S_ 18, 818000

Define

t =f(sl.s

1 L R s1+n-1) » 1el

and let
t = LN I ] t-ltotlllﬂ L]
We define g (s) = t. Clearly g 1s continuous,
A basic problem 1s to determine conditions on the

function of f which will assure that the mapping g 1s an

onto mapping, 1. €., g (S) = S.

-2-
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Remark. g 1s an onto mapping 1f,and only if,
gm (Sm+n-1) =Sm for all m , or, equivalently, if,and only if,
B being any m-block, there exists an (m+n-l)-block C such

that gm(C) =B ,

The stated condition 18 obviously necessary.
To prove the sufficiency, suppose that, B being any

m-block, there exists an (m+n-1)-block C such that gm(C) =B,

But then g (S) 18 clearly dense in S ., Since S 1s compact

and g 1s continuous, g (S)1s compact, thus closed, and, being
dense 1n S, g (S) =S.

Let s =.., 8 18,581 belong to S. Then s 1is said

to be periodic if there exists a positive integer p such that

s = s ,1€l .,
1

1+p
The least such positive integer 1s the period of s .,
Remark. If s e€S 1s periodic, then g (s) 1s periodic.
If s has period w then the period of g (s) divides w .
In the following if A 1s a set, crd (A) denotes the
number of membersof A . If B¢ Sm , g;’: (B) denotes

the collection of all members C of Sm such that

+n-1

-1

8 (C) = B. In general, if D 1s a subset of S, 8m

(D) denotes the collection of all members E of Sm+n-1

such that & (C)eD .



REF ID:A38876

Lemma, Let the mapping g defined by f be an onto

mapping and let there exist a positive integer k such that

crd gn;l

(B) = k for some m-block B and crd g{)l (A)z k
for all p-blocks A and all positive integers p. Then

-1

crd gp+m (BA) = k for all p-blocks A and all positive

integers p.

Proof, It 1s sufficient to prove that
-1 -1
crd g . (BO) = k =crd B+l (Bl) .
Let
-1
gm (B) = [Cll CZ' LICNC I ) Ck] .

A member of gm;i (BO0) cannot be identical with a member

of gm;i (Bl) . Thus crd gm;i [BOo, B1]=2k .

But

g5 [BO.Bl c [C0,C,0, ..., CO,CLC,1,..,C 1]
and thus ’

gm;} [BO,B1] = [C,0,C,0, ..., C,0,C/1,C.1, ..., C/]
and crd gm;i [BO, B1] = 2k .,

Since crd gmﬁ (BO) =z k, crd gm;} (Bl) = k ,

it follows that

crd gm;ll' (BO) = k =crd gm;i (Bl).

The conclusion of the lemma now follows by induction.

-4
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Theorem Let the mapping g be an onto mapping., Then

21 for all p-blocks A and all positive

crd g-' (A) £ 2
P

integers p.

Proof, Let It denote the set of positive integers and let

-1
k = Min crdg (B_) .
mel', B_ ¢S < m
m “m

Since g 1s an onto mapping, kZl1 ., Let B be an m-block
such that crd g;r:' (B) = k. It follows from the preceding

-1

lemma that crd 8p+m (BA) = k for all p-blocks A and all

positive integers p.

Let
-1
gm (B) = [Cll Czl coo9g Ck] .
Then
-1 (Bs ) c [cs c, S ] e It
gm+q q lql cee 5y g q » 4 .

We recall that Sq denotes the set of all g-blocks and BSq

denotes the set of all (m+q)-blocks with initial block B, Let

%

the collection [Clsq' cee » Cp Sq] be donoted by Cq .

%
The set Cq has k - Z(1 members,

Now different members of BSc1 cannot have the same

inverses under -1 and each member of BS_ has exactly
gm+q q

-1 -1 - q
k 1inverses under g + « Thus crd g _ . (BS ) = ke 27,
-1 (BS ) = c* and the mappin (c*) =BS 1s
gm+q_ q q pping grn+<;‘ q q

exactly k to 1 .,
-5 -
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Let A be an arbitrary p-block and let crd g;I (A) = w,
Let q =p+n-1 ., Now Sq contains exactly w members, the
image of each of which under gp 1s A, Thus in C: there are
exactly kw members whose images under gm+q are blocks ending
1

in A, Now BSq contains exactly 2™"" blocks ending 1n A, Since

*
the mapping g d Cq—) BSq 18 exactly k to 1, the image set

m+q
under gm+q of kw members of C; must contain at least w
members, It follows that Zn"1 2 w and the proof 1s completed.
Theorem., Let the mapping g be an onto mapping. Then
crd g;l (A) = 2! for an1 p-blocks A and all positive integers p.
Proof. Let A be a p-block and suppose

crd gl;l ) ¢ 2t
From the preceding theorem we infer that crd g;l (A) < Zn"1 and
crd g:ll (B) < 2*! for all g-blocks B and all positive integers

- spin-l
q . Now g (S, ) =8, . erdS = 2P and

P

crd S, = 2P . Also crd[s . - g;]' (A)] > 2PTo-1 _ on-l (5P gy
and

-1

S - A -] S - A .

8p [Spen1 -8, (A =S,
n-1 -1

Not more than 2 members of Sp+n-1 - gp (A) can

map, under gp ,» 1nto the same element of Sp - A .,

N(B, qi) g 2% . %, p-ntl

- b -
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Thus

P - _ -n+l -
2¥ -1 =crd [Sp Al > 2 crd [Sp+n-1

g5l ()] > 2P -1,
From this contradiction, we infer the truth of the theorem.
Remark, The preceding theorem shows that the property
that g be an onto mapping 15 equivalent to the property that

g be noisy 1in the sense that it transforms a random sequence
(all blocks equidistributed) into a random sequence.

Theorem, Let g be an onto mapping and let s € S . Then
crd g-1 (s) < 21 .

Proof. Suppose that crd g-1 (s) > 2n-1 . Let

g (s) =t, tz, ces o b . Consider any pair tl,tJ s 1 * ) .
There exists an integer le such that the central (Zp1J + 1)-blocks
of t and tJ are not identical. But then the central (2p+l)-blocks

of tl'tJ differ for all p > plj . Let p be an integer such that

y | 12120 K]

Then no two of the central (2p+l)-blocks of o tZ' cee tk

p > max [p

are ahke. But the images under gZp-n+2 of these k blocks

are i1dentical, If k > Zn-1 , this contradicts a preceding theorem.
The proof of the theorem 1s completed,
Remark, It appears that the multiplicities of the mapping g

at different points may be different. It would be of interest to

investigate the various possibilities and characterize them.,

-7 -
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Theorem. If g 18 an onto mapping and
8 = ce B_18,8;8, .o0
18 a periodic sequence, then each member of g'1 (s8) 1s

periodic. Let s have period w, let te g-1 (s) and let p be

the period of t . Then p = pw, and 1 £ p < 22t
Proof, Let g be an onto mapping, let
8 = ceo

8 1558855+
be periodic with period w and let t e g-l (s) . Let P, (k) be

the number of different k-blocks in s . Then P (k) < w for

all k By a preceding theorem we infer that t contains at
most Zn-lw different (k+n-1)-blocks for each positive
integer k. Thus, if Py {m) denotes the number of different

m-blocks in t , we have P, (m) < Zn-lw forall m .

Suppose t has no period less than Zn-lw +1 From

*
lemma 7.2 (Morse and Hedlund, American Journal of Mathematics,

Vol. 60, 1938, pp 815-866) P, (m)>m + 1 for all values of

1

m for which P, (m) < 2w 1 . But this 1s true for all

m and thus P, (m)>m +1 forall m Let m = Zn-lw .

Then p, (A?.n-1 w)> Zn_lw +1 , contradictory to

P, (m) < Zn—lw for all m . We infer that t has a period

less than 2" %> +1 and t 1s periodic,

- 8-



REF ID:A38B76
Let p be the periodof t . Then p < Zn-lw From

a preceding theorem, there exists a positive integer p such
that pzp w , and we have w Spwszn-lw and 15p_<_2n-1 .

Lemma Let m be a positive integer and let B be an

m-block. For q> m , let N(B, q) be the number of q-blocks

which contain B . Then

lim .I:I.(_B.!.L) = 1 .
q=> « 21

Proof,. We first observe that N(B.q)/Zq 1s a montonic
increasing function of q. For if C 18 a g-block which contains B,
then CO0 and Cl are different (q+l)-blocks each of which
containg B , Thus

N(B,qtl) > 2 N(B,q)

and consequently

N(B, q+l) > N(B, q)
2atl = >4

Thus we can assume that g = pm and 1t 18 sufficient to

prove that

lim N(B,pm) _ ,
p-yo 27

_ -m
Let B=Bl , and let Bl' BZ' ceas Bk’ k=2 .

be the set of all m-blocks, Any block of length, pm can be
written as a p-block of B 's. There are kP such blocks, Of
these there are (k-l)p which do not contain B = Bl' and

thus kP - (k-l)p which do contain B, Thus

-9.
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N(B,pm) > kP - (k-1)P = 27P . (2™1P

and

N(B, m) > 1_(1__1_)13 .
o™ om

But
lim (1 __L)p = 0
p—> ® 2"

and hence
lim N(B,pm) _ ,
p—>% 2Pm™

The proof 1s completed,

Lemma, Let B be a block, For g> n , let Dq denote

a partition of the set Sq of all g-blocks into sets of q~blocks each

containing Zn-1 members. For q sufficiently large, all members
of some element of the partition Dq must contain B as a
sub-block,

Proof! We suppose the theorem false. That 1s, there

exists a sequence of integers q; < 9, Secoe s Dq , Dq s ceo » and
1 2

partitions such that some member of each element of in fails to

contain B as a sub-block, But then the number of members of

Dq1 which do not contain B 1s at least equal to the number of

elements of Dq1 , or 2¥/rl | Thus, using the notation of

the preceding lemma, we have

- 10 -
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But then
N(B, q1) 1
Iim sup —_—t2s <1~ —T .
1) 29t 2R

This contradicts the preceding lemma,
Definition® The sequence
s = cee 8_3 8,88, .0,

18 said to be transitive provided every finite block appears in s .
Theorem, Let g be an onto mapping and let s be transitive,
Then each member of g-l(s) 1s transitive,
Proof, Let B be an arbitrary k-block. The collection

g'l (A) | A e S, defines apartiton D . ., ofall (m+n-1)-blocks

into sets each containing Zn'l blocks . From the preceding lemma

we 1nfer that for m sufficiently large there exists an m-block

A such that each member of g; (A) contains B . Now A

appears mn s and each member of g-l (s) must contain an

element of g;:' (A) . It follows that each member of g-l (s)

contains B and thus i1s transitive,

Let fn be a function with domain Sn and range 1n S

(n) (n)

m * & be corresponding mappings of S

1 9

and let g mtn-l

into Sm and S mto S , respectively. Let fp be a function
with domain Sp and range in 51 , and let gl(_g) . g(p) be

the corresponding mappings,

- 11 =
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The mappings gg:lp_l and gg:) can be composed in
an obvious fashion to define mappings gl(g) . g(n) of
m+p-1
(p), _(n)
Sm+n+p-2 into Sm and thus a mapping g g of S into S ,

Similarly there 1s defined a mapping g(n) . g(p) of S into S .

(), gn) o ), (o)

It 18 not necessarily true that g g ¢ g o

let s €S
s = coe B_1 B 8o
and let
t = con tptot) eus

be defined by

1:1 = s1+1 y

The transformation ¢ : s —» t 18 called the shift transformation,

It 18 a homeomorphism of S onto S whose properties have
been studied extensively (see Gottschalk and Hedlund, Topological
Dynamics, Am, Math. Soc. Colloquum Publications, vol, 36, 1955,
Ch, 12). A subset Y of S 1sinvariant if ¢ (Y)=Y ,

It 18 easily shown that the transformation g of S into S,
defined by f , commutes with ¢, 1.e., gd=¢g .

Theorem, Let f define an onto mapping g of S onto S and

and let X be a proper closed invariant subset of S , Then
g (X) 1s a proper closed invariant subset of S,

Proof . Suppose g 18 an onto mapping and X 18 a
proper closed invariant subset of S, Then X 18 compact,
g (X) 1s compact and g (X)1s closed. Since g =¢g,

g (X} 1s invariant,

-12 -
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Suppose g (X) =S. Let s be a transitive point and
let x ¢ X such that g {(x) =s . According to a preceding
theorem, x must be transitive and thus X =S , contrary to
hypothesis, The theorem 1s proved.

Corollary, g(p). g(n) 18 an onto mapping if and only if both

g(p) and g(n) are onto mappings.
Proof, Clearly, if g(P) and g(n) are both onto mappings,

the g(PZ g(n) 1s an onto mapping.

Suppose g(p) g(n)(S) C g(p)(S) $ contrary to the

g(p) (n)

supposition, Thus, in any case, 1s onto, Nowif g

1s not onto, then g(n)(S) 1s a proper closed invariant subset,

(p)

Hence, by the last theorem g g(n)(S) 18 a proper closed

subset of S , again contradicting the assumption that

g(P). g(n) 1s onto, Thus g(n)

must also be onto and the second
part of the corollary 1s proved,

The remainder of this paper is devoted to the determination
of all functions fn which determine onto mappings g(n) for
n <4 4.

The totality of functions f which define onto mappings
in the cases n =2 or 3 are easily compiled and are as
follows. For n = 2 there are 6 such functions of which
three are

f(xl, X5 ) = x

" = x,

1] -
—x1+x2

- 13 -
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~—

and the other three are the duals of these, that 18, the
functions obtained by adding 1 to each of the function values.
For n =3 there are 30 such functions of which 15 are

as follows:

f(xl,xz.x3)

1 Xy

2 X,

3 X3

4 *, + X,

5 x txg

6 X, + x5

7 x t x, + x4

8 x + X X5

9 X3 + X)X,

10 x +x, + X %3

11 x; + x; + X X,

12 % + x5 + X %5

13 X, + x3 + *X,

14 x1+x2+x3+xlxZ

15 x1+ Z+x3+x2x3
and the other 15 are the duals of these,
Remark, Of the fifteen listed, the first six are compositions

of mappings for which n=2 ,

- 14 -
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For the case n=4 , it 1s considerably more difficult
to determine which functions determine onto mappings. It s

known that 1f f 1s linear in either x, or x, , that 1s, £

4
18 defined by

f(xl,xz,xs,x4) =% + fl(xz,x3,x4)

or
f(xl,xz,xs,x4) =X, + f4(x1,x2,x3) ,

then the corresponding mapping 18 onto. There are 496 such
functions

It 15 also known that 1f f 1s defined by composing a
pair of mappings of lower order (in this case a 3 and a 2) then
f defines an onto mapping if and only if each of the composing
mappings 18 onto. It is easily verified that there are 22 such
composed functions which are not linear i1n X, or x, and
which define onto mappings Of these 1l are given in the following

table

f(x'l’ xZ’ X3, X4)

NI A A N U S
®
w
-+
H
[\

=
o
-'-

M

-15 ~
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and the remaining 11 are the duals of these,
Now a necessary and sufficient condition that the mapping

g defined by the function f be an onto mapping 1s that

crd g;: (B) = Zn-l for each m-block B, and each positive

integer m , But it 1s sufficient (theorem due to Blackwell,

n-1 1

see Rothaus, loc,cit,) that crd g;ri (B) =2 for m = 2"

and each 2° Lblock B.

This criterion 18 not as difficult to apply as first
appears if use 1s made of the following device, 1llustrated for

the case n =4,

Let the set of all possible 3-blocks be denoted as follows*

000
001
010
) 011
100
101
110
111

~S~oolmbhNTO

Then the 4-blocks can be denoted

0000 00
0001 01
0010 12
0011 13
0100 24
0101 25
0110 36
(2) 0111 37
1000 40
1001 41
1010 52
1011 53
1100 64
1101 65
1110 76
1111 77

where
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x X (i, 3=0,1, 2, ..., 7, j=E2t0or 21+1, mod 8)
1]
denotes the 4-block of which the initial 3-block 1s x, and the

terminal 3-block 1s xJ o
Now for any specified function f (on the 4-blocks) we

list under 0, those blocks B for which f (B) =0, and

under 1, the complementary set, For example:
0 1
00 12
01 24
13 37
5 41
(3) :
36 52
40 64
53 65
76 77 .
Any 5-block B can be written in the form abc , where

a, band ¢ are integers from 0 to 7 , a 1s the integer corresponding
by (1) to the initial 3-block of B , b 1s the integer corresponding
by (1) to the middle 3-block of B and c 1s the integer corresponding
by (1) to the terminal 3-block of B . Thus 0101l can be written
as 253 ,

Now 1f the 5-block B = abc 1s to map (under gz) into 00 ,
then ab and bc must appear under 0 in (3) and this condition
1s clearly sufficient. It 1s thus possible to obtain the 5-blocks
which map into 00 by taking any element ab under 0 in (3)

for which the second term b appears as a first term and following

- 17 -
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ab by the second term of all elements for which b 1s the first
term., As an 1llustration we determine the 5-blocks which map

into 00 and Ol respectively

00, _on
000 012
001 137
013 252
136 364
253 365
400 537
401 764
536 765

The process can be continued 1n an obvious fashion. The
7-blocks which map into 0000 are

0000
00000
00001
00013
00136
40000
40001
40013
40136 .

But 1t should be noted that in continuing this process, it 1s only
the digits (representing 3-blocks) which appear at the ends which
are of concern to us and the intermediate ones can be suppressed,
We list, in terms of their terminal 3-blocks only, the blocks which

map i1nto 0, 00, 0000, 00000000 , respectively,

-18 -
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0 00 0000 00000000
00 00 00 00
01 01 01 01
13 03 03 03
25 16 06 06
36 23 40 40
40 40 41 41
53 41 43 43
76 56 46 46

When 1t was found (by hand computation) that there
existed a function (n=4) which defined an onto mapping, which
was not linear i1n any variable and which was not obtained by
composition of onto mappings of lower order, it appeared that
1t might be worthwhile to determine all such functions,

This determaination was carried through on SWAC, The
non-restrictive assumption was made that £(0,0,0,0) =0 .,
Then of all such functions, those were rejected which did not
produce an equal number of 0's and 1l'%s (eight of each). The
remainder were then successively subjected to tests as to
whether crd g (B,) = 8 for each 2-blocks B, , crd
g;I (B4) = 8 for each 4-block B,, crd gél (BS) = 8 for
each 8-block BS o There were 291 such successful matriculants,

The following data concerning these was recorded on punch cards,

-19 -
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1) A tabulation of the function f ,

2) The eight 4-blocks constituting f-l (0) in terms

of their terminal 3-blocks.

3) The coefficients of the polynomial defining f .

The machine time in carrying through this program
was 80 minutes,

Of the 291 functions defining onto maps, the 248 linear
in the first or last variable were sorted out, leaving a residue
of 43, Of these 1l were known to be obtainable by compositions
of lower order onto mappings, leaving a residue of 32 . These

32 functions are tabulated in the following two tablesg

- 20 -
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onto mappings

either the first or last variables and which are not obtainable by compositions of lower
(n < 3)

Table I Functions on 4-blocks which determine onto mappings, which are not linear in

order
2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
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Table II, Non-zero coefficients of the polynomials defining the

functions listed in Table I.

f(xl‘ X2 X3» X4) = z a, % ¥ zb11x1x3

<14 1<1<5)<4
Ay Ay, By, B3 B
1
1
1 1 1
1 1
1 1 1 1
1 1 1
1 1
1 1 1
1 1 1 1
1 1
1 1 ]
1 1 1
1 1 1
1 1 1 1
1 1 1
1 1 1
1 1 1
1 1 1 1
1 1 1
1 1 1 1
1 1 ]
1 1
1 1 1
1 1
1 1 1
1 1
1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1 1
1 1
11 1 1

-22-

+ ZCIJRXIXJXR .

I<i<y<k<4

14 Bz Boy Bsy Gz Ciag C3g Gag

1
1
1 1
1
1 1
1
1
1
1 1
1
1 1
1
1 1
1 1
1 1
1 1
1
1 1
1
1 1
1 1
1
1 1
1
1
1
1 1
1 1
1 1
1
1
1 1 @
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It was pointed out by R A Dean and R. C Lyndon
that the set of 32 polynomials listed in Table II, can be
generated from a set of eight by application of two simple
processes One of these 1s the substitution (x1x4) (x2x3), 1 e,,
interchange of % and x 4 and interchange X, and Xg

The other 18 complementation, 1 e., substitution of 1+ x for

S =1, 2, 3, 4 The following is a generating set
7 x3+x1\x4+x1x2x4
10 X3t X, X, X X, Xy
24 xl+x3+::2::4+x]_xzx4
22. x1+x3+x1x4+x1x2x4
9 x3+x1x2+x2x3+x2x4+x1x2x3+x1x2x4
13. xz+x3+xzx3+xzx4+x1xzx3+x1xzx4
14 x2+x3+xlx2+x1x3+x1x4+x1xzx3+x1x2x4
23 x1+xz+x3+x2x3+x2x4+x1x2x3+x1x2x4

-23-
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WORKING PAPER No, 22

A NUMERICAL SIMULATION TO STUDY THE READINGS OF A
FIXED ANTENNA ADCOCK RADIO DIRECTION FINDER
UNDER CONDITIONS OF FADING
Joseph F. Mount
C. Tompkins
25 Feb 1958
10 pages
In this paper we shall describe a numerical simulation
from which we try to draw some conclusions concerning the
behavicr of a perfectly balanced fixed antenna Adcock direction
finde: [1, 2, 3] under conditions of fading. It 1s assumed that
fading 1s caused by random cancellation of signals arriving
on different transmission paths, Normally these paths might
differ either in the number of reflections from the 1onosphere or
in the layer from which they are reflected, or both, Mainor
variations in directions of the transmission path from any
Jump pattern may occur at the recewving site because of

variations in 1onospherrc tilt, variations in penetration, local

reflections, and other causes.

S - 110 022
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will be centered about two sets of direction cosines, which

may be specified independently of each other and of other

simulations at the start of each calculation; an approximate

intensity is specified precisely for each transmission, inde-

pendently of all other inputs. We allow for the following random

variations in transmissions, each variation to occur slowly

enough to justify treatment through use of variables which

are piecewise constant:

(a)

(b)

(c)

The relative phase between the two arrivals
varies randomly and uniformly between

0 and 2w ;

The intensity of each arrival will vary from the
approximate value set by a factor 1+ h, where

h is a sample from an approximately normal
distribution with mean zero and standard deviation
which is set as part of the input of the problem;
The six direction cosines of the arriving signals

will be modified to direction numbers by the

‘addition of independent samples from normal

distributions each with mean zero and with
standard deviations which are set as partof .

Wi, .

the input to the calculation,

-2-
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These eight standard deviations are set independently of
each other and independently of other parts of the calculations,

At least for the time being the calculation will consist
of the determination of two functions and the recording of
relations between them. For each choice of the random variates
the signal strength received at one of the collectors wall be
computed and for each choice the reading of a fixed antenna
Adcock direction finder will be estimated. The signal strength
will be calculated straightforwardly, The reading of the
radio direction finder will be estimated either by computing the
points of maximum deflection of a Watson Watt [2] type display
under the stimulus of the two signals, or by computing angles
of minimum deflection for a rotating goniometer [1] type
display. In each case, it will be assumed that the equipment
receiving the signals i1s 1n perfect adjustment, so that none
of the calibrating complexities of [1] and [2] will be introduced
except to the extent that the angle of arrival influences the
octantal error,

It 18 proposed that relations between these two functions
be exhibited by means of tallies in one hundred positions,

giving a kind of scatter diagram. Thus, if the functions are

-3 -
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denoted by f and F , we propose that the range of possible
values of each be divided into ten parts, arbitrarily as part
of the input routine, and that the number of examples found
in which the functions fall into each possible pair of cells be
recorded and presented as output,

2. The functions to be computed -- the two-channel case,

For the two-channel case, we examine equations (8)
of [1] (these equations will be repeated below), and try to
compute the response of a two-channel direction finder
under the influence of a pair of signals of the type indicated
above.

Explicitly, we assume that signals with frequency
w/2& are being received over two paths. The quantities
pertmment to the two signals will be distinguished by subscripts,
the subscript 1 for the first signal and the subscript 2 for
the second, The first signal will arrive with direction cosines

ay [31 and Yy » the second will have direction cosines

@y [32 , and Yy o The signals will have amplitudes (weighted

by the effectiveness of the collectors) A1 and A2 respectively,

The first signal will be taken to set the standard in phase,
so that the responses of the two antenna pairs to it will be
given by direct analogues of equations (8) in [1] ,

-4 -
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wp,d
ENSI = 2A1 sin —= sin ot ,
(1)
wa, d
EEWI = ZA1 sin-——= sin wt ,

where, as before, d 1s the distance between collectors
of the pair and c 1s the velocity of radio wave propogation,
For the second arrival the phase 1s displaced a constant

amount gz sampled from a uniform distribution over the

range [0, 27] ., (Here gz plays a role somewhat different
from the role of £ in [2].) The responses to the second

signal are respectively

w Zd
ENSZ = ZAZ sin ——— sin (wt - §2) .
(2) wa ,d
EEWZ = 2A2 sin ———sin (wt - §2) .

The analysis here follows that of [2] .

The total NS signal i1s the algebraic sum of the two

signals received:
wﬁld “’ﬁzd
ENS = Z[A1 8in —5— sin wt + A2 sin—ps=— sin (wt- gz)] ’
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or
wpld wﬁzd
(3) Eys = Z[(A1 sin—— + A2 cos §2 Sin—s_ ) sin wt
wf. d
- A2 sin §2 Sin ~—s-— cOs wt] .
Simalarly,
wald w[SZd
(4) Epw = 2[(A1 8in—s +A2 cos gz sin —5= ) sin wt
wp,d
2
- A, sm §2 sin —= cos wt] .

The development of the functions to be tallied follows
the general development in [2] .

A heterodymng signal E; cos (w + wo)t 1s mixed

with ENS and EEW » the difference frequency 1s extracted,

and the signals amplified to be presented respectively as
horizontal and vertical deflections, Using (3) and (4) and
the relaticns

cos {w+ wo)t sin wt = Z[sin (2w + wo)t - sin wot] .
(5)

cos (w+ mo)t cos wt = -'i[cos (2w + wo)t + cos wot]

the retained signals are proportional to
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w ﬁld wﬁzd

EV = -(A1 s ——s— +A2 cos §2 sin —5- ) sin wot
d
- A_sin s1n—‘fE§-— cos w t
2 §2 2c (s} ’

(6) wald waza

EH = -(.A1 sin —5- + A2 cos gz sin —= ) sin w t

wﬁzd
- AZ sin gz sin—s—— cos w t .

The deflection may now be calculated as a function of t°

formally, r2 =EV2 + E:I .

The maximum deflection (and the minimum) occurs when
dr/dt = 0, hence when
]

(7) EVE +EHEH=0,

where the dot denotes differentiation with respect to time.
Since we propose a computational, and not an analytic,
attack on the problem, we propose to simplify the notation

at this point, To that end write the computable functions

wp,d wB,d
Vg=- (A sin——+A,cos §, sin—5—) ,
w[szd
VC = - AZ s1n§2 s ———
(8) wa,d wa ,d
Hy =- (A1 sin ——— +A2cos §2 sm—zc—-) .
wazd
He =-A2 sin §2 810 —5——

-7 -



g T REF ID:A38876

UNCLASSIFIED

so that

EV = Vs sin wot + VC cos wot

(9)
E

H., sin w t + H
o

H S cos wot o

C
Then the condition (7) for maximum or minimum

deflection gives

2(v.v., + H H_)
{10) tan 2 w t = cS c S o
o0 VZ-V2+H2-H2
C S C S

In a complete cycle of 2w radians, this equation (10) 1s
satisfied by four angles w t separated by x/2 radians,

Values for E., and EH at these points may be

v

found by writing

N s _
+
-1 X tan Zwoto + 1

tan 2(.00(:o

tan w t =
oo
using a similar formula to find tan moto/z (choosing the

ambiguous si1gn carefully each time) and writing

2 tan woto/Z
sin w_t = 5 .
1 + tan woto/Z

(11) 2
1-tan“w t /2
o O

2 L]
woto/Z

cos wt =
oo

1+ tan
Independently of the choice of sign, the four dis-

placements may be computed easily. If the computed values

of (11) are written
-8 -
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So = sin woto and Co = CcOS woto .

then at the four extreme deflections the components are

1 1
Ey, =S, ,Vg+C_ V., and Eg =S H, +CH_. ,
E.2=2CV.-SV. and E.2 =CH. -SH
VvV Yo' S o C H ] o C
(12) 3 3 < o
Ey =-S;Vg=-C, Vs and E = -S H.-CH. .
e tz.cv.+sv_ and E} = .cHu.+sH
v o S o C H oS o C °*
E 3 and E 4 above are obtainable from E 1 and E 2 b
v \'4 v v oY

multiplying by -1 , and a similar remark applies to the
horizontal components, only the first and second of these
deflections will be considered. Write

&M% = B2 + £°, sl 2,

the first or the second of the deflections will be retained
depending on whether (El)2 or (Ez)2 18 larger, We

choose the first function to be tallied as
= a2 oy 2
F, = max HEL)" + (E)7T
F1 1s 2 measure of the received signal strength,

Finally note that for the deflection retained the dis-

placement 1s at an angle b, where
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o
EH
(13) tan ¢ =
E o
v

for the chosen displacement index o . This 1s the tangent
of the angle read on the direction finding equipment

For some o, B write tan ¢o = 912 . Choose
a , B to be horizontal direction cosines accepted as correct--
say the mean from which -] and B deviate, Then the

tangent of the "error' in reading {including octantal error) 1s

tan ¢ - tanqwo

(14) F,=tan (¢ - ¢,) =y + tan ¢ tan ¢ ¢

This function F2 1s the second function to be tallied.
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